摘要 中心粒卫星是高阶组装体,由蛋白质 PCM1 支撑,以粒子形式围绕中心体运动,在基本细胞过程(尤其是纤毛生成和自噬)中发挥关键作用。尽管存在涉及磷酸化和泛素化的严格控制机制,但塑造这些结构的翻译后修饰的前景仍然难以捉摸。本文,我们报告了一种小分子坏死磺酰胺 (NSA),该小分子以结合和灭活坏死性凋亡细胞死亡的关键效应物 MLKL 而闻名,它独立于 MLKL 与中心粒卫星、纤毛生成和自噬相交叉。NSA 是一种强效氧化还原循环剂,可触发 PCM1 与选定伙伴的氧化和聚集,同时对中心粒卫星的整体分布影响最小。此外,NSA 介导的 ROS 生成会破坏纤毛生成并导致自噬标记物的积累,而 PCM1 缺失可部分缓解这一现象。总之,这些结果将 PCM1 确定为氧化还原传感蛋白,并为中心粒卫星与自噬之间的相互作用提供了新的见解。
中国空间技术研究院 (中国) 643 26,135 30 空客 (欧洲) 611 13,954 67 波音 (美国) 430 14,624 88 Energiya (俄罗斯) 430 7,401 37 三菱电机 279 89,137 20 IHI 201 13,657 28 泰雷兹 (欧洲) 153 6,495 54 三菱重工 131 27,823 16 霍尼韦尔 (美国) 117 19,431 7 雷神 (美国) 105 5,383 3 斯奈克玛 (欧洲) 102 4,363 6 太空系统/劳拉 (美国) 58 168 12 Viasat (美国) 1 685 0 蓝色起源 (美国) 12 19 1 SpaceX(美国) 1 10 9 Rocket Lab(美国) 5 5 0 北京零度空间科技公司(中国) 2 24 0 Mojave Aerospace Ventures(美国) 2 2 0 PLD space(西班牙) 0 0 0 Reaction Engines(英国) 6 13 4 Relativity Space(美国) 0 2 0 Skyrora(英国) 0 0 0 Oneweb(美国) 11 29 0 Blacksky(美国) 0 0 0 Capella Space(美国) 0 0 0 Hawkeye360(美国) 0 6 0 Iceye(芬兰) 0 1 0 OHB System(德国) 1 8 20 Planet(美国) 5 27 2 Spire Global(美国) 6 22 0 ispace(日本) 7 13 1 Planetary Resources(美国) 4 4 1 Astroscale 12 12 0 D-Orbit (意大利) 4 4 0 NASA (美国) 91 1,924 959 日本宇宙航空研究开发机构 119 500 473 国防科技大学 (中国) 69 6,274 280 哈尔滨工业大学 (中国) 338 25,237 274 加州理工学院 (美国) 19 2,648 314 韩国航空宇宙研究院 (韩国) 436 2,739 72
名启博:プラマ・核融合学志92,396(2016)。[4 W.H.fietz and al。,IEEE Trans。苹果。超级。26,4800705(2016)。 [5]P。Bruzzone和Al。 ,ncle。 Fuance 58,103001(2018)。 l。米切尔和阿尔。 ,超级条件。 SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。26,4800705(2016)。[5]P。Bruzzone和Al。,ncle。Fuance 58,103001(2018)。l。米切尔和阿尔。,超级条件。SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。SCI。树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。树。34,103001(2021)。!t。安多和al。,技术完整。1,791(1998)。Lage F. Dahlgren和Al。,Eng已满。甲板。167,139(2006)。]H。H. Hashizume和Al。,Eng已满。甲板。63,449(2002)。[10! Y. Ogawa和Al。,J。填充完整的等离子体。79,643(2003)。<+11 Z. Yoshida和Al。,Ressing主题等离子体。1,8(2006)。[12 Y. Ogawa和Al。,Ressing主题等离子体。9,140,014(2014)。13 V. Corat和Al。,Eng已满。甲板。136,1597(2018)。14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。14 A. Sagara和Al。,Eng已满。甲板。89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。89,2114(2014)。15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。15 Y. Zhai和Al。,Eng已满。甲板。135,324(2018)。https://typeoneergy.com/ [20!Sorbon和Al。,Eng已满。甲板。100,378(2015)。[22 A A. Sykes和Al。,ncle。Fusion 58,016039(2018)。<3- y。歌曲和Al。 ,Eng已满。 甲板。 183,113247(2022)。 24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。歌曲和Al。,Eng已满。甲板。183,113247(2022)。24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。24-24 N. Yanagi和Al。,Ressing主题等离子体。9,140,013(2014)。,Proc。 14th Symp。 Fusion Technology,1727(1986)。,Proc。14th Symp。Fusion Technology,1727(1986)。
摘要:目标:普罗蛋白转化酶枯草蛋白/KEXIN 9型(PCSK9)抑制剂是一种新型的胆固醇 - 降低胆固醇药物,可以减少动脉粥样硬化,而与全身性脂质变化无关。然而,PCSK9抑制剂预防动脉硬化的机制尚未完全阐明。最近的证据已经揭示了PCSK9抑制剂与氧化应激之间的相关性,这加速了动脉粥样硬化的发展。此外,越来越多的研究表明,自噬可保护脉管系统免受刺激性的影响。因此,这项研究的目的是研究PCSK9抑制对动脉粥样硬化中氧化应激和自噬的作用,并确定自噬是否调节PCSK9抑制作用介导的氧化应激和巨噬细胞中的炎症。方法:雄性载脂蛋白E(APOE) - / - 小鼠喂给高脂饮食(HFD)8周,然后接受PCSK9抑制剂(Evolocumab),媒介物或Evolocumab加上Evolocumab加氯喹(CQ),再进行8周。对照组中的APOE - / - 小鼠定期(即非高脂饮食)喂食16周。在氧化的低密度脂蛋白(OX-LDL)治疗的人类急性单核细胞性白血病细胞系THP-1衍生的巨噬细胞中进行其他体外实验,以模仿动脉粥样硬化的病理生理过程。结果:PCSK9抑制剂治疗减少了氧化应激,脂质沉积和斑块病变区域,并在HFD喂养的APOE-/ - 小鼠中诱导自噬。最重要的是,氯喹(CQ)的给药,一种自噬抑制作用,显着降低了PCSK9抑制剂治疗对HFD喂养的APOE-/ - / - 小鼠的氧化应激,脂质积累,炎症和动脉粥样硬化病变的有益作用。体外实验进一步表明,PCSK9抑制剂增强了由OXLDL处理的THP-1衍生的巨噬细胞中的自噬通量,如自噬体和自染色体的数量增加所示。此外,自噬抑制剂CQ还降低了PCSK9抑制介导的对氧化应激,反应性氧(ROS)的产生(ROS)和OX-LDL处理的THP-1衍生的巨噬细胞中的炎症。结论:这项研究揭示了一种新型的保护机制,PCSK9抑制可增强自噬,从而减少动脉粥样硬化的氧化应激和炎症。
加拿大温尼伯大学曼尼托巴大学人类解剖学和细胞科学系B曼尼托巴省儿童健康研究所,曼尼托巴省大学生理学系,加拿大温尼伯大学C.圣博尼法斯研究中心,曼尼托巴省大学曼尼塔比大学,温尼伯大学,温尼伯大学,温尼伯大学,温尼伯,温尼伯,加拿大医学院,医学院,医学院。 Internal Medicine, University of Manitoba, Winnipeg, Canada f Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden g INSERM U845, Research Center ‘‘Growth & Signaling'' Paris Descartes University Medical School, France h Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia i Young研究人员俱乐部,阿尔达比尔分公司,伊斯兰阿扎德大学,阿尔达比尔,伊朗J临床生物化学系,扎希丹医学科学大学医学院,扎赫丹,伊朗K细胞和分子生物学研究中心,扎赫丹医学科学大学,伊朗医学科学大学,伊朗医学院,伊朗医学院,医院,医院,医院,医院,医院研究所。
致病性分枝杆菌可能会颠覆先天的免疫机制,并可以调节引起皮肤疾病的细胞的激活。皮肤分枝杆菌感染可能会出现不同的临床表现,并且与污名,畸形和残疾有关。对与人类皮肤分枝杆菌感染相关的免疫发病机制的理解对于确定新的治疗策略的靶标至关重要。麻风病患者的发生反应发作和复发,耐药性分枝杆菌菌株的出现以及缺乏治疗分枝杆菌皮肤感染的有效药物增加了基于对分枝杆菌的再利用药物的疗法的兴趣。评估的许多这些疗法的作用机理与自噬的激活有关。自噬是一种进化保守的溶酶体降解途径,与分枝杆菌杆菌负荷的控制有关。在这里,我们回顾自噬在皮肤分枝杆菌感染的发病机理中的作用,并讨论自噬作为药物发育的靶标,并重新利用皮肤分枝杆菌感染。
作为一种高度保守的细胞过程,自噬一直是广泛研究的重点,因为它在维持细胞稳态及其在心血管发病机理中的影响方面的关键作用。在多种动物模型中已经认识到肌肉功能的下降以及神经元系统以及对压力的敏感性的提高。心血管结构和细胞功能障碍的自噬缺陷与哺乳动物和果蝇中心脏的生理和病理状况有关。在这篇综述中,我们系统地分析了水果层心脏中与自噬相关的途径,并旨在为为患者开发潜在治疗以及有效的农业应用策略提供全面的理解。该分析阐明了果蝇在生理和病理条件下心血管功能中自噬的分子机制,从而对心血管疾病的发展提供了显着的见解。关键自噬相关蛋白的丧失,包括跨膜蛋白ATG9及其伴侣ATG2或ATG18,以及DMSETRIN,导致心脏肥大和果蝇的结构异常,类似于年龄依赖于年龄的心脏功能功能。自噬相关(ATG)基因家族,细胞或核骨骼层粘连蛋白以及雷帕霉素(MTOR)信号途径的机械或哺乳动物靶标在果蝇中的心脏功能中具有严重影响的果蝇功能,具有自噬激活,表现为抑制心脏层板层层板层层。本评论评估了心脏自噬的功能意义,MTORC1/C2复合物以及ATG2-AMPK/SIRT1/PGC-1α途径的轴,在哺乳动物和果实中的心脏中至关重要,导致心脏发展,成长,成熟,以及心脏体内稳态的维持。几种干预措施的有益作用增强了心脏功能,包括运动和冷应激,可以影响哺乳动物和果蝇中丝氨酸/苏氨酸蛋白激酶信号传导的自噬依赖性TOR活性。练习表现出可确定的自噬并在过度时会抑制自噬,从而突出了自噬在心脏健康中的双重作用。
1 Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, 330006, China, 2 Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Medical College Road, Yuzhong区,重庆,400016,中国,烧伤塑料和伤口修复3号医疗中心,第一家Affinied Hospital,江西医学院,北昌大学,北旺大学,扬旺·昂路,东北区,北昌,江西,330006,330006,330006,中国,北部4号,北部北部,北部的北部北部第三名。中国,江西孕产妇和儿童健康医院5号,中国,北田330006,北田330006,6 Haplox Biotechnology Co.中医,Qianjiang Road,Yaohai District,Hefei 230038,Anhui,P.R。中国,8转化医学合作创新中心,深圳人民医院(第二次临床医学院,吉南大学;南部科学技术大学的第一家AFFIMIATIAD HOSPITION,南部科技大学),Luohu区,深圳市518020,中国广东和9号伯恩和整形外科系,广州第一人民医院,南中国中国技术大学,潘费库路,帕富岛,Yuexiu dive,Guangangzhou,Guangangdong,5010111801180118011801180118011801。
哺乳动物雷帕霉素靶标 (mTOR) 抑制剂依维莫司、替西罗莫司和雷帕霉素具有广泛的临床应用;然而,与其他化疗药物一样,耐药性的产生限制了它们的有效性。一种假定的耐药机制是促进自噬,这是抑制 mTOR 信号通路的直接结果。自噬主要被认为是一种细胞保护性生存机制,通过该机制,细胞质成分被回收利用以产生能量和代谢中间体。依维莫司和替西罗莫司诱导的自噬似乎发挥了很大的保护作用,而雷帕霉素似乎以细胞毒性作用为主。在这篇综述中,我们概述了不同肿瘤模型中响应 mTOR 抑制剂而诱导的自噬,以确定自噬靶向是否可以作为与 mTOR 抑制相关的辅助疗法具有临床应用。
摘要:噬血细胞性淋巴组织细胞增生症 (HLH) 是一种罕见的、危及生命的疾病,其特征是免疫反应不受控制且无效时出现过度炎症。尽管诊断和治疗有了很大的进步,但它仍然是临床管理的挑战,如果没有积极的治疗方法,预后不良。本文献综述重点关注儿童继发性 HLH,其病因和治疗方法各不相同。它总结了流行病学、病理生理学、诊断、治疗和预后的最新证据,并详细描述和比较了继发性 HLH 的主要亚型。最后,它解决了未解决的问题,重点是诊断和新的治疗见解。