皮肤组织,由表皮,真皮和皮下组织组成,是人体最大的器官。它是针对病原体和身体创伤的保护性障碍,在维持体内稳态中起着至关重要的作用。皮肤病,例如牛皮癣,皮炎和白癜风,很普遍,可能会严重影响患者生活的质量。外泌体是脂质双层囊泡,这些囊泡来自具有保守生物标志物的多个细胞,是细胞间通信的重要介体。来自皮肤细胞,血液和干细胞的外泌体是调节皮肤微环境的主要外泌体类型。外泌体发生和传播的失调以及其货物的变化对于炎症和自身免疫性皮肤疾病的复杂发病机理至关重要。因此,外泌体是皮肤病的有希望的诊断和治疗靶标。重要的是,源自皮肤细胞或干细胞的外源外泌体在改善皮肤环境并通过携带各种特定活性物质并涉及多种途径来修复受损的组织中起作用。在临床实践领域,外泌体引起了人们的注意,作为诊断生物标志物和针对皮肤病的前瞻性治疗剂,包括牛皮癣和白癜风。此外,临床研究证实了干细胞衍生外泌体在皮肤修复中的再生功效。这将在诊断和治疗皮肤病方面提供外泌体的新观点。在这篇综述中,我们主要总结了外泌体在皮肤病学中的机制和应用的最新研究,包括牛皮癣,特应性皮炎,白癜风,全身性红斑狼疮,全身性硬化症,全身性硬化症,糖尿病伤口愈合,糖尿病伤口愈合,肥大性疤痕和肥大性疤痕和毛茸茸和皮肤染色。
ExoAtlet 的故事是如何开始的?我毕业于莫斯科国立罗蒙诺索夫大学力学与数学系,还拥有俄罗斯总统国民经济与公共管理学院的工商管理硕士学位。我们的工程团队驻扎在莫斯科国立大学,我们的科学领袖专攻人工智能 (AI),对这些技术非常了解。我们的机器人技术资深人士在机器人技术领域工作超过 15 年,在轮式和步行机器人的系统控制方面拥有丰富的经验。2015 年,我们研究了不同的技术,然后决定成立一家专门从事外骨骼的商业公司。自从我们开始开发外骨骼以来,技术发生了巨大的变化。与旧电池相比,电池更轻、能量密度更高,而且体积和重量也没有那么大和重。近年来,微电子技术也在稳步发展。我们的梦想是用轻便易戴的结构和持久耐用的电机来帮助残疾人。第一阶段是开发阶段和临床试验。我们与所谓的“试点患者”合作。这些先驱者准备试验一项创新的机器人技术,唯一的目标就是重新行走并拥有新的生活质量。在 2016 年获得俄罗斯首个医疗认证之前,我们进行了许多不同的测试。凭借此认证,我们能够开始销售并覆盖大量医院和约 1,000 名患者。2017 年,我们在韩国成立了第一家俄罗斯以外的公司。作为认证的一部分
7 Zero-temperature Feynman diagrams 176 7.1 Heuristic derivation 177 7.2 Developing the Feynman diagram expansion 183 7.2.1 Symmetry factors 189 7.2.2 Linked-cluster theorem 191 7.3 Feynman rules in momentum space 195 7.3.1 Relationship between energy and the S-matrix 197 7.4 Examples 199 7.4.1 Hartree–Fock energy 199 7.4.2 Exchange correlation 200 7.4.3 Electron in a scattering potential 202 7.5 The self-energy 206 7.5.1 Hartree–Fock self-energy 208 7.6 Response functions 210 7.6.1 Magnetic susceptibility of non-interacting electron gas 215 7.6.2 Derivation of the Lindhard function 218 7.7 The RPA (large- N ) electron gas 219 7.7.1 Jellium: introducing an inert positive background 221 7.7.2 Screening和血浆振荡223 7.7.3 Bardeen-Pines相互作用225 7.7.4 RPA电子气的零点能量228练习229参考232
雷帕霉素的机制/哺乳动物靶点 (mTOR) 是磷酸肌醇 3-激酶 (PI3K) 相关激酶家族的成员,它整合细胞内和环境因素,协调多种细胞/组织功能,如细胞生长、增殖、代谢、自噬、细胞凋亡、寿命、蛋白质/脂质/核苷酸合成以及组织再生和修复 [1]。尽管 mTOR 信号对于正常的细胞稳态至关重要,但 mTOR 的异常激活可能与多种病理结果相关,包括不同类型的癌症、代谢/心血管/肺部疾病和神经退行性疾病 [2]。考虑到 mTOR 信号转导的病理生理重要性,我们在本期特刊中收集了评论文章、原创研究文章和简短通讯,以深入了解不同疾病中的 mTOR 信号网络,从而开发新的 mTOR 靶向治疗方法。 mTOR 是两个结构和功能不同的蛋白质复合物的核心成分,即 mTOR 复合物 1(mTORC1)和 mTOR 复合物 2(mTORC2)。mTORC1 整合各种刺激和信号网络来促进细胞合成代谢,但它通过调节自噬过程的每个步骤(包括诱导、成核、延长和双膜自噬体的形成,自噬溶酶体的形成以及自噬体隔离底物的回收)来抑制自噬等分解代谢过程[3]。肌肉中 mTORC1-自噬轴的失调可导致多种肌肉疾病的发展。Han 等人强调了平衡 mTORC1 和自噬在能量产生/消耗和大分子周转过程中的重要作用,对于维持骨骼肌的生理状态[4]。他们还讨论了通过恢复 mTORC1 和自噬之间的平衡来减轻两种肌肉疾病(癌症恶病质和肌肉减少症)进展的潜在治疗选择。PI3K/mTOR 信号通路在调节细胞稳态中起着关键作用;因此,信号失调通常与衰老和与年龄相关的病理有关,包括癌症、心血管疾病和糖尿病等。因此,了解这种高度非线性的系统通路(涉及复杂的调节机制和与邻近通路的串扰)对于推进生物学和开发新的治疗方法是必不可少的。Ghomlaghi 等人利用文献中可用的计算和实验研究,对 PI3K/mTOR 信号的复杂动态机制网络进行了很好的概述,强调了它与其他主要信号通路的相互作用/相互依赖性、竞争性抑制和表观遗传改变特性,以及相关的相互关联的正/负调节回路(反馈/前馈机制)[ 5 ]。在本文中,作者强调了使用计算模型来研究这种复杂的网络
1儿科部,国家自动输入疾病和淀粉样变性中心,陶器,瓦里斯医院,凡尔赛医院,法国凡尔赛医院,2个小儿风湿病学系国家自动疾病疾病和疗程疾病疗法,司法部,chu du kremlin beriq uever sickic scipsive scricem,sickick. Kremlin Bic ˆ etre, France, 3 Pediatric Nephrology, Rheumatology, Dermatology, HFME, Hospices Civils de Lyon, National Referee Centre RAISE, & INSERM U1111, Université de Lyon, Lyon, France, 4 Department of Internal Medicine, National Reference Center for Auto-In fl ammatory Diseases and Amyloidosis, CEREMAIA, Tenon Hospital, AP-HP, Sorbonne University, Paris, France, 5 Department of Pediatrics, H ˆ opital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France, 6 Department of Pediatrics, CHU de Grenoble, Grenoble, France, 7 Department of Pediatrics, H ˆ opital des Enfants, CHRU Bordeaux, Bordeaux, France, 8 Direction de La Recherche Clinique et de L '创新(DRCI)凡尔赛医院,凡尔赛,法国,9UnitéRomanded'Immuno-RhumatologiePédiatrique,Chuv,卢桑大学,洛桑,瑞士洛桑
尽管有有效的新疗法,但适应性耐药性仍然是 AML 治疗的主要障碍。自噬诱导是适应性耐药性的关键机制。与正常造血细胞相比,诊断时患有白血病的母细胞表达更高水平的顶端自噬激酶 ULK1。化疗和靶向药物可上调 ULK1,因此我们假设开发 ULK1 抑制剂可能为自噬抑制的临床转化提供独特的机会。因此,我们证明,通过遗传和药理学手段抑制 ULK1 可抑制治疗诱导的自噬,克服适应性耐药性,并与化疗和新兴的抗白血病药物如维奈克拉 (ABT-199) 产生协同作用。该研究的下一步目标是探索潜在机制。从机制上讲,ULK1 抑制会下调 MCL1 抗凋亡基因,损害线粒体功能并下调 CD44-xCT 系统的成分,导致活性氧 (ROS) 缓解受损、DNA 损伤和细胞凋亡。为了进一步验证,我们生成了几种 AML 小鼠模型。在这些小鼠模型中,ULK1 缺乏会损害白血病细胞归巢和植入,延迟疾病进展并提高生存率。因此,在研究中,我们验证了我们的假设,并确定 ULK1 是适应性抗治疗的重要介质,也是 AML 联合治疗的理想候选药物。因此,我们
CIN是医院内获得性急性肾损伤的第三大病因(1)。在接受冠状动脉造影或经皮冠状动脉介入治疗的患者中,CIN的发生率高达20%~25%(1)。CIN通常定义为造影剂暴露后48~72小时内血清肌酐绝对升高0.5mg/dL或相对升高25%(2)。但建议在暴露后7天内出现急性肾衰竭也应考虑CIN(3)。但在糖尿病患者等高危人群中,发生率可增至50%(4,5)。糖尿病是CIN的独立危险因素。对于慢性肾脏病患者,每增加1倍基线肾小球滤过率,糖尿病的存在都会使发生CIN的风险增加一倍(6,7)。因此,迫切需要了解CIN的机制并制定有效的治疗策略。凋亡和自噬是重要的生物学过程,参与调控糖尿病肾病的发病机制(8-10)。凋亡在诱导肾细胞进行性丢失,导致肾小球硬化、肾小管萎缩和肾间质纤维化方面起着重要作用(11)。凋亡相关蛋白Bcl-2可能通过激活其下游通路介导细胞凋亡(12)。Caspase家族成员Caspase-3可以调控细胞凋亡过程(13)。自噬参与维持近端小管上皮细胞的稳定结构和功能(14)。作为哺乳动物细胞中常见的自噬体标志蛋白,LC3已被证实参与自噬的形成(15)。Beclin-1是酵母自噬基因Atg6/Vps30的同源基因,是自噬体形成的关键分子(15)。 AGE 是一种有害的蛋白质产物,在肾脏疾病患者中高度表达(16)。此外,AGE 是糖尿病微血管病变的主要原因。持续的 AGE 暴露通常会导致肾小管上皮细胞损伤(17)。我们之前的研究发现 CIN 糖尿病小鼠中 PKC β 2 表达较高,这表明 PKC β 2 可能参与糖尿病 CIN 的发病机制(18)。在这项研究中,我们发现沉默 PKC β 2 可减轻泛影葡胺和 AGE 诱导的 HK-2 细胞凋亡和自噬。这些发现提供了一个新的见解,即 PKC β 2 可能成为糖尿病患者 CIN 的新型药物。
理论基础:多形性胶质母细胞瘤(GBM)是中枢神经系统最恶性的肿瘤之一,其预后不良主要是因为术后化疗迅速产生耐药性导致复发率高。虽然巨自噬/自噬被认为是化疗期间肿瘤存活的基本因素,但临床上仍然缺乏用于预测患者预后和化疗效果的自噬生物标志物。方法:我们结合转录组和单细胞测序数据来识别胶质瘤中差异表达的自噬相关基因。我们发现与蛋白质折叠相关的关键基因钙联蛋白(CANX)的过表达及其在内质网(ER)中的分泌,提示GBM患者预后不良。通过透射电子显微镜(TEM)、蛋白质印迹和免疫荧光检测与CANX相关的自噬流。采用流式细胞术、细胞增殖、活性测定和 GBM 颅内异种移植小鼠模型来验证 CANX 在 GBM 进展中的作用。结果:CANX 敲低抑制了 GBM 细胞的增殖和自噬体形成。另一方面,CANX 过表达增加了丝裂原活化蛋白激酶 (MAPK) 活性,导致 BNIP3(CL2/腺病毒 E1B 19 kDa 相互作用蛋白 3,调节线粒体自噬的关键因子)的积累和保护性线粒体自噬。值得注意的是,当与替莫唑胺 (TMZ) 结合时,CANX 敲低延长了 GBM 携带小鼠的寿命。此外,我们的研究表明,经典钙抑制剂尼莫地平 (ND) 降低了 CANX 表达,从而增强了对 TMZ 的敏感性。结论:我们的研究结果表明 CANX 在 GBM 中起着致癌基因的作用。我们还描述了 CANX/MEK/ERK/BNIP3 线粒体自噬通路,为 GBM 耐药性的分子机制提供了新的见解,并确定了治疗靶点。