空间结构光场应用于半导体量子点会产生与均匀光束根本不同的吸收光谱。在本文中,我们使用圆柱多极展开式对不同光束的光谱进行了详细的理论讨论。对于量子点的描述,我们采用了基于包络函数近似的模型,包括库仑相互作用和价带混合。单个空间结构光束和状态混合的结合使得量子点中的所有激子态都变为光可寻址。此外,我们证明可以定制光束,以便选择性地激发单个状态,而无需光谱分离。利用这种选择性,我们提出了一种测量量子点本征态激子波函数的方法。该测量超越了电子密度测量,揭示了激子波函数的空间相位信息。这种相位信息的提取是从偏振敏感测量中已知的;然而,这里除了二维偏振自由度之外,还可以通过光束轮廓获得无限大的空间自由度。
本文提出了一种对具有多个耦合自由度的量子系统进行近似最优控制模拟的方法。使用相互作用图中的一阶马格努斯展开来模拟时间演化,其中不同自由度之间的耦合被视为扰动。提出了一种数值实现程序,利用成对耦合和零阶时间演化算子的可分离性来降低计算成本,并根据自由度数对其进行了分析。该公式与无梯度方法兼容,可以优化控制场,并为此采用了随机爬山算法。作为说明,在控制场的影响下,对两个和三个偶极-偶极耦合分子转子系统进行了最优控制模拟。对于双转子系统,优化场以实现取向或纠缠目标。对于三旋翼系统,磁场经过优化,要么使所有三个旋翼朝向同一方向,要么使一个旋翼朝向特定方向,而另外两个旋翼指向相反方向。
弦理论中的引力/规范理论对应 [1; 2; 3] 代表了在寻找量子引力的一般非微扰描述方面取得的令人振奋的进展。它假定具有固定时空渐近行为的某些量子引力理论与普通量子场论完全等价。我们可以将这种对应视为通过量子场论提供了量子引力理论的完整非微扰定义。然而,尽管有大量证据证明这种对应关系的有效性,但我们并没有深入了解时空/引力为何或如何从场论的自由度中出现。在本文中,我们将基于广为接受的规范理论/引力对偶的例子,论证引力图景中时空的出现与相应的传统量子系统中自由度的量子纠缠密切相关。我们首先会展示,与断开的时空相对应的某些量子态叠加会产生被解释为经典连通时空的状态。更定量地说,我们将在一个简单的例子中看到,减少量子态之间的纠缠
摘要:只要经典的自由度和量子系统的经典程度扩散,量子和经典自由度的一致耦合就存在。在本文中,我们得出了这种经典量词(CQ)重力理论的牛顿极限。我们的结果既可以通过量规固定CQ一般相对性的路径积分理论以及CQ主方程方法来获得。在每种情况下,我们都会发现相同的弱场动力学。我们发现,新to的电势会扩散到质量特征状态下的反熔率下降的量。我们还将结果作为一个无序的随机微分方程系统,用于杂交经典量词状态的轨迹,并提供了一系列构建功绩形象的内核,可通过通过decoeherence-difdiff-first-fordercors-fordercors-ford Iteck frasemimentimental test IT进行实验测试的重力测试。我们将弱场限制与先前的牛顿重力模型进行比较和对比,耦合到量子系统。在这里,我们发现牛顿电位和量子状态在锁定状态下变化,随机时间流动。
具有巡回自由度和本地化自由度的量子材料表现出许多异国情调的相位和过渡,它们偏离了金茨堡 - 兰道范式。这项工作使用复合算子形式 - ISM检查双层强烈相关的哈伯德模型。我们观察到层对称性的自发断裂,其中层中的电子密度达到半填充,从而导致层选择性莫特相(LSMP)。这个断裂的对称阶段在远离半填充的临界平均电子密度下变得不稳定。此外,显着的层分化持续到中等的层间跳,超越该系统突然过渡到层均匀相(LUP)。在LSMP相中,两层中的电子被弱杂交,导致小费米表面。在从LSMP到均匀相的过渡时,费米表面的体积跳跃。我们还讨论了导致不同扰动下LSMP阶段崩溃的物理机制。
Hybrid quantum phononics with superconducting qubits* Johannes Pollanen Cowen Distinguished Chair in Experimental Physics, Associate Professor of Physics, and Associate Director of MSU Center for Quantum Computing, Science, and Engineering (MSU-Q), Michigan State University Superconducting qubits, and the experimental architecture of circuit quantum electrodynamics (cQED), have emerged as not only a promising platform用于量子计算,还用于研究合成/混合量子系统的基本和应用方面,该系统由量子比其他量子系统或自由度耦合。,能够利用超导Qubits的特性来调查和操纵语音自由度,从而为使用高频声音探索电路量子光学元件的新智能打开了大门。由于量子位提供了本质上强的非线性,这些类型的混合“量子声”系统具有访问广泛的量子运动状态,超出有效的线性光学机械或机电相互作用,而不是可实现的。
简介。- 光学信息可以按照自由度的极化程度进行编码,通过光学旋转和空间自由度进行参数,即横向光学模式的相位和强度曲线[1,2]。矢量梁结合了极化和空间信息。由具有不同复杂幅度的正交极化组成,它们表现出空间变化的极化曲线,提供了广泛的应用[3-5]。原子偶极转移通过选择规则对极化敏感,以及通过兔频率的复杂光幅度敏感,使原子活跃的光学元件可以通过矢量束的内在特性进行修改和修改。这种双向相互作用允许创建复杂的光学现象,在过去的几十年中,这些现象已经进行了广泛的研究[6]。矢量光原子相互作用可以产生空间各向异性[7 - 9]和一致性[10-12],并在原子中量身定制非线性效应[13-16]。矢量梁也已存储[17,18],并在原子系统中转换[19,20]。
印度[3] GSSSIETW,Mysuru/Electronics&Enerical-Tosennics和传播工程部Mysuru,印度摘要 - 该论文旨在机械地设计低成本的“软机器人手”以获得更好的有效性。软机器人手显着吸引了作为机器人技术的最终效果的焦点。与其他刚性的软机器人手相比,与人类机器人和环境机器人相互作用更安全。除此之外,以最低的成本控制非常容易控制。由于机器人的手是用柔软的材料制成的,因此它的加权也很轻,并且更合规性。本文的目的是设计低成本的软机器人手,以机械的方式获得更好的有效性,了解设计软机器人手所需的各种材料,并理解软机器人手的有效性。设计软机器人手的理由可以解释为获得更大的优势,以实现额外的“自由度”来执行各种事情,而这些事情无法通过人类手索引术语(低成本,软机器人的手,自由度,
在空间模式和极化下不可分割的抽象矢量梁已成为从通信到成像的许多不同应用中启用工具。通过控制旋转和轨道角动量的复杂激光设计实现了这种适用性,但到目前为止仅限于二维状态。在这里,我们演示了在八个维度上创建和完全控制的第一个矢量结构化的光,这是一种新的最新最新。我们首次将外部调节光束以控制偏执的结构光束中的古典格林伯格 - 霍恩林格(GHz)状态的完整集,类似于具有高维度的多面量子纠缠状态,并引入了一种新的Somagraphy方法,并引入了一种新的验证方法。我们的完整理论框架揭示了一个丰富的参数空间,可进一步扩展自由度和自由度,为经典和量子制度中的矢量结构光提供新的途径。
有限元分析在设计中的相关性、建模和离散化、插值、元素、节点和自由度、FEA 的应用。一维元素和计算程序:杆元素、梁元素、任意方向的杆和梁元素、元素组装、刚度矩阵的属性、边界条件、方程的解、机械载荷和应力、热载荷和应力。