四个直接数值模拟 (DNS) 数据集涵盖了 8 至 14 的有效自由流马赫数,用于研究高超音速边界层中湍流引起的气动光学畸变行为。数据集包括两个来自平板边界层(马赫数 8 和 14)的模拟数据集和两个来自尖锥流(马赫数 8 和 14)的模拟数据集。来自每个 DNS 的瞬时三维密度场被转换为折射率并进行积分以产生由湍流引起的光程差 (OPD) 分布。然后将这些值与文献中的实验数据和现有的 OPD 均方根模型进行比较。虽然该模型最初是为马赫数 ≤ 5 的流动开发的,但它为我们比较高超音速数据提供了基础。
我们考虑在有限温度下的多个标量场的自由理论,并研究了通过标量场的自由流通过本作者提出的方法作为ADS/CFT对应的建设性方法的可能候选方法。我们发现全息照相指标具有以下特性:i)它是一个渐近抗DE保姆(ADS)黑色brane度量标准,具有一些未知的物质贡献。ii)它没有坐标的奇异性和温和的曲率奇异性。iii)其时间成分在某个ADS径向切片上成倍衰减。我们发现,该物质在整个空间中蔓延开来,我们推测这是由于无限期许多无质量的较高自旋场的热激发所致。我们猜想以上三个是通过流动方程方法实现的黑洞全息的通用特征。
努力基于具有信任和协议的免费数据流中的国际数据流中的融合,从而使执法机构对数据进行访问。这包括支持和建立诸如全球跨境隐私规则(CBPR),处理器的全球隐私识别(PRP),具有信任的G7数据自由流和OECD原则的政府访问私营部门实体持有的个人数据的原则。这种方法将在执法部门对数据的访问与严格的隐私保护之间取得平衡,以确保跨境数据访问尊重个人权利并遵守国际规范。交叉认可问责制框架,合规性认证或行为的约束代码可以确保组织保护更高水平的数据保护并提高个人的信任。
本文介绍了一种通过使用 CFD 解决方案来校正风洞数据的替代方法。校正基于风洞中测量的压力与 CFD 在自由流动条件下预测的压力之间的差异,在风洞数据点周围的攻角和马赫数下。优化用于找到攻角和马赫数的组合,以最小化测量压力和预测压力之间的差异。使用替代模型来近似 CFD 数据,以提高该方法的计算效率。优化的结果是校正后的攻角和马赫数,它对应于自由飞行条件下的压力分布,就所使用的目标函数而言,该压力分布最适合风洞实验。结果表明,当在目标函数中使用所有机翼压力时,得到的校正与使用壁面压力特征方法预测的壁面干扰校正一致。
银城隧道 (STT) 方案涉及修建一条双孔公路隧道,为格林威治半岛(格林威治皇家自治市)的 A102 布莱克沃尔隧道入口和 A1020 下利十字路口/银城路(伦敦纽汉姆区)的潮汐盆地环形交叉路口之间提供新的连接。该项目于 2018 年 5 月通过交通部颁发的开发同意令 (DCO) 正式获得规划许可。STT 长约 1.4 公里,可容纳包括双层巴士在内的大型车辆。它将包括一条专用的巴士、长途汽车和货车车道,使 TfL 能够提供额外的跨河巴士路线。该方案还包括在布莱克沃尔隧道(位于伦敦塔哈姆莱茨区的北入口)和新的银城隧道上引入自由流用户收费。
摘要 首次在高压、低温条件下表征了选择性双光子吸收共振飞秒激光电子激发标记 (STARFLEET) 测速技术。研究在美国宇航局兰利研究中心的 0.3 米跨音速低温风洞中进行,流动条件涵盖了该设施的整个运行范围;总压力范围从 100 kPa 到 517 kPa,总温度从 80 K 到 327 K,马赫数从 0.2 到 0.85。检查了 STARFLEET 信号强度和寿命测量的热力学依赖性,因为强度和寿命都会影响测量精度。发现信号强度与密度成反比,而寿命与密度几乎成线性关系,直到接近氮的液汽饱和点。速度测量的准确度和精度是在整个条件范围内评估的,标准误差确定为 1.6%,而精度范围约为自由流速度的 1.5% 至 10%。还观察到精度具有温度依赖性,这可能是由于在较高密度下寿命较长所致。
推进系统的特性可在档案文献中找到。鉴于此,本研究的目的是确定由电动机驱动的直径在 4.0 至 6.0 英寸范围内的各种小型螺旋桨的性能。设计和建造了一个实验测试台,其中螺旋桨/电动机安装在风洞中,以进行静态和动态测试。将本实验的静态和动态结果与以前的研究结果进行了比较。对于静态测试,推力系数、螺旋桨功率系数和总效率(定义为螺旋桨输出功率与电输入功率之比)与螺旋桨转速的关系图。对于动态测试,螺旋桨的转速在规则间隔内保持不变,同时自由流空速从零增加到风车状态。推力系数、功率系数、螺旋桨效率和总效率与各种转速的前进比的关系图。发现推力和扭矩随着转速、螺旋桨螺距和直径的增加而增加,随着空速的增加而减小。使用现有数据以及来自档案和非档案来源的数据,发现方形螺旋桨的推力系数随螺旋桨直径的增加而增加,其中 D = P 。螺旋桨系列的推力系数(sam
摘要 本研究重点研究了确定作用于具有自适应机翼几何形状(变形几何形状)的微型飞行器 (MAV) 的空气动力的实验和分析方法。本设计的目标是通过使用智能材料修改机翼的弯曲度和厚度,以在飞行阶段实现最佳自主性或航程。因此,研究了最相关的变形配置。它们由马德里理工大学 (UPM) 通过增材制造设计和制造,并在国家航空航天技术研究所 (INTA) 的低速风洞中进行了测试。粒子图像测速技术用于研究不同变形配置的尾流结构。实验测试以 10 m/s 的自由流速度针对从 0º 到 30º 的几个攻角进行。采用了两种理论方法:横向动能积分和 Maskell 理论;分别用于确定诱导阻力系数和升力系数。对模型后面的尾涡系统进行了完整的定性和定量研究,以了解变形几何的气动行为。