交联聚合物(例如热固性塑料)是一类重要的高性能材料,用于交通运输或可持续能源生产等应用。在这个博士项目中,您将探索未来开发具有动态交联的更可持续热固性塑料的基本机制。我们是 Empa 的一个化学小组,拥有很高的科学卓越性,最近开发了基于磷化学的新型共价自适应网络 (CAN),从而实现了聚合物在统一解决方案中的防火和可回收性。这个跨学科项目涉及聚合物化学和物理学,由瑞士国家科学基金会 (SNSF) 资助。它也与根特大学合作。本项目中解决的科学问题将有助于理解 CAN 中的局部共价和非共价机制,并将它们与以后与技术应用相关的宏观特性相关联。
Niveditha Devasenapathy博士是一名医生,拥有印度卫生研究的博士学位。她在临床研究方法中拥有15年的校外和校园教学经验。她热衷于研究研究人员提高研究质量的研究能力。她目前负责乔治学院的学术临床试验部门。她还使用较低的资源密集型方法积极从事优化临床试验数据的管理。她目前的研究兴趣是使用数字技术改善膝盖后置换后的患者护理,并参与与风湿性心脏病有关的试验
联系主要主管:Husnain.sherazi@newcastle.ac.uk第二主管:rehmat.ullah@newcastle.ac.uk研究项目背景边境安全是一个关键的全球关注,需要创新的技术解决方案,以确保有效的监测和威胁缓解。具有高级传感器和通信功能的无人机已成为边境监视中的宝贵资产,提供实时监控和快速响应功能。6G通信技术的出现,其特征是超低潜伏期,高带宽和稳健的连接性,再加上多访问边缘计算(MEC)基础架构,为增强基于无人机监视系统的功能提供了变革的机会。该项目提出了6G启用的无人机和MEC基础架构的集成,以实现自适应轨迹优化,以确保智能,高效和可靠的边界监视。AIM/目标该项目旨在通过将6G通信技术与支持MEC的无人机整合到尖端监视系统,重点介绍自适应轨迹优化,以提高情境意识,响应性,资源效率和资源效率。关键目标:
人类认知的区别是我们适应不同环境和环境的能力。然而,在单独的社会和社会环境中,主要研究了推动适应性行为的机制,其集成框架仍然难以捉摸。在这里,我们在虚拟的Minecraft环境中使用集体觅食任务来整合这两个领域,通过利用视觉范围数据的自动转录与高分辨率的空间轨迹相结合。我们的行为分析同时捕获了社交互动的结构和时间动力学,然后使用计算模型直接测试这些模型,从而依次预测每个觅食决策。这些结果表明,社会觅食和选择性社会学习的适应机制都是由个人觅食成功(而不是社会因素)驱动的。此外,这是适应性的程度(无论是社交学习还是社会学习),它可以最好地预测个人表现。这些发现不仅融合了跨社会和社会领域的理论,而且还为人类决策在复杂而动态的社会景观中的适应性提供了关键的见解。
摘要。实时战略任务的有效评估需要自适应机制来应对动态和不可预测的环境。本研究提出了一种改进评估函数以实时响应战场态势变化的方法,利用实时战略游戏中基于在线强化学习的动态权重调整机制。该方法在传统静态评估函数的基础上,利用在线强化学习中的梯度下降来动态更新权重,并结合权重衰减技术确保稳定性。此外,还集成了 AdamW 优化器,实时调整在线强化学习的学习率和衰减率,进一步减少对人工参数调整的依赖。循环竞赛实验表明,该方法显著提升了 Lanchester 作战模型评估函数、Simple 评估函数和 Simple Sqrt 评估函数在 IDABCD、IDRTMinimax、Portfolio AI 等规划算法中的应用效果。该方法显著提高了得分,并且随着地图尺寸的增加,这种增强变得更加明显。此外,对于所有评估函数和规划算法,该方法引起的评估函数计算时间的增加都保持在 6% 以下。所提出的动态自适应评估函数为实时战略任务评估提供了一种有前途的方法。
空中无人机越来越被视为在安全关键环境中检查的宝贵工具。在采矿行动中,这对人类运营商带来了动态和危险的环境,这一点都没有。无人机可以在许多情况下部署,包括有效的测量以及搜救任务。在这些动态上下文中运行是在挑战,因此需要无人机控制软件在运行时检测和适应条件。为了帮助开发这样的系统,我们向我们提出的系统是一个模拟测试床,用于调查矿山中无人机的自适应控制器。Aloft使用凉亭利用机器人操作系统(ROS)和模型环境来提供基于物理的测试。仿真环境是由在矿山的物理模型中收集的3D点云构造的,并包含在现实世界中预期的特征。高举允许研究社区的成员将自己的自适应控制器部署到无人机的控制循环中
a Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway b School of Mathematical Sciences, University of Southampton, Building 54, Highfield Campus, Southampton, SO14 3ZH, United Kingdom c Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,美国爱丁堡大学数学学院PA 15213,詹姆斯·克莱克·麦克斯韦(James Clerk Maxwell)大楼,彼得·格特里·泰特路(Peter Guthrie Tait Road)
摘要 - 本研究提出了一个强大的脑肿瘤分类框架,首先是对 233 名患者的细致数据整理。该数据集包含各种 T1 加权对比增强图像,涵盖脑膜瘤、神经胶质瘤和垂体瘤类型。采用严格的组织、预处理和增强技术来优化模型训练。所提出的自适应模型采用了一种尖端算法,利用了自适应对比度限制直方图均衡化 (CLAHE) 和自适应空间注意。CLAHE 通过根据每个区域的独特特征调整对比度来增强灰度图像。通过注意层实现的自适应空间注意动态地为空间位置分配权重,从而增强对关键大脑区域的敏感性。该模型架构集成了迁移学习模型,包括 DenseNet169、DenseNet201、ResNet152 和 InceptionResNetV2,从而提高了其稳健性。 DenseNet169 充当特征提取器,通过预训练权重捕获分层特征。批量归一化、dropout、层归一化和自适应学习率策略等组件进一步丰富了模型的适应性,减轻了过度拟合并在训练期间动态调整学习率。技术细节(包括使用 Adam 优化器和 softmax 激活函数)强调了模型的优化和多类分类能力。所提出的模型融合了迁移学习和自适应机制,成为医学成像中脑肿瘤检测和分类的有力工具。它对脑肿瘤图像的细致理解,通过自适应注意力机制的促进,使其成为神经成像计算机辅助诊断的一项有希望的进步。该模型利用具有自适应机制的 DenseNet201,超越了以前的方法,实现了 94.85% 的准确率、95.16% 的精确率和 94.60% 的召回率,展示了其在具有挑战性的医学图像分析领域提高准确率和泛化的潜力。关键词:NeuroInsight、脑肿瘤分类、医学影像、自适应深度学习、自适应框架。1. 简介通过整合最先进的技术,特别是在深度学习领域,医学诊断领域经历了前所未有的进步。这一进步的一个显著例子是使用自适应深度学习进行脑肿瘤分期分类,这是一种新颖的方法,它不仅利用了深度学习的能力,而且还能动态适应脑肿瘤分期固有的复杂性,在诊断中呈现出更高的精确度和个性化水平。在医疗保健领域,脑肿瘤因其表现形式多样、严重程度各异而成为一项艰巨的挑战。传统的肿瘤分类方法经常难以准确描述肿瘤分期的细微细节。在此背景下引入自适应深度学习标志着一种范式转变,它赋予诊断过程一种自学习机制,该机制会随着遇到的每个数据集不断发展和完善自身[1] – [4]。这种开创性方法的基础要素是一种先进的深度学习算法,其特点是动态和自适应性。自适应深度学习方法与典型的深度学习模型不同,它不断修改其参数以响应输入数据的独特特征,而不是依赖于固定的、预定的架构。这种自适应能力确保了对与脑肿瘤分期相关的复杂性的更细致入微和针对具体情况的理解[5] – [7]。
由肢体损失,衰老,中风和其他运动缺陷造成的移动性障碍是全球数百万个人面临的重大挑战。先进的辅助技术,例如假肢和矫形器,有可能大大改善此类个人的生活质量。这些技术设计中的关键组成部分是对肢体受损的参考联合运动的准确预测,这受到这些患者可用的关节运动数据的稀缺性的阻碍。为了解决这个问题,我们提出了一种新型的模型,重新利用了深度学习的重新编程属性,结合了网络反转原理和检索绘制的映射。我们的方法适应了最初为健全的个体设计的模型,以预测肢体受损患者的关节运动,而不会改变模型参数。我们通过广泛的经验研究对低于膝盖挑战的患者的数据进行了广泛的经验研究,证明了重新映射的功效,从而证明了对传统转移学习和微调方法的显着改善。这些发现对截肢,中风或衰老的患者的辅助技术和流动性具有显着影响。