预测药物-靶标相互作用是药物发现的关键。最近基于深度学习的方法表现出色,但仍存在两个挑战:(i)如何明确建模和学习药物与靶标之间的局部相互作用,以便更好地进行预测和解释;(ii)如何将预测性能推广到来自不同分布的新型药物-靶标对。在这项工作中,我们提出了 DrugBAN,这是一个具有域自适应功能的深度双线性注意网络 (BAN) 框架,用于明确学习药物与靶标之间的成对局部相互作用,并适应分布外的数据。DrugBAN 对药物分子图和靶蛋白序列进行预测,使用条件域对抗学习来对齐不同分布中学习到的相互作用表示,以便更好地推广到新型药物-靶标对。在域内和跨域设置下对三个基准数据集进行的实验表明,DrugBAN 在五个最先进的基线上实现了最佳整体性能。此外,可视化学习到的双线性注意图可以从预测结果中获得可解释的见解。
摘要:人工智能的应用越来越多地被用于支持工作场所的工作和学习。自适应性和推荐系统是此类创新技术的主要特征,可以增强个性化。最值得注意的是,残疾人可以在工作和在职培训期间受益于此类技术。然而,将此类系统适应非常多样化的目标群体并不容易。在职业培训(尤其是职业康复)的各种教育环境中实施基于人工智能的辅助系统也具有挑战性。本立场文件着眼于现有的基于人工智能的应用程序,以分析它们对更具包容性的工作场所和资格认证流程的潜力。此外,这些技术是在当前伦理话语的背景下讨论的,以确定现有基于人工智能的应用程序中反映规范要求的程度。
摘要 - 本文提出了一种利用移动代理在分布式传感器网络中进行协作目标分类的新计算范式。每个传感器不再将本地分类结果发送到进行融合过程的处理中心,而是从处理中心调度移动代理,在每个传感器节点执行融合过程。使用移动代理的优点是它可以实现渐进式准确性并具有任务自适应性。为了提高分类的准确性,我们实施了行为知识空间方法进行多模态融合。我们还修改了经典的 k-最近邻方法,使其适应分布式传感器节点网络中的协作分类。本文最后给出了基于现场演示的实验结果。
摘要 - 本文提出了一种利用移动代理在分布式传感器网络中进行协作目标分类的新计算范式。每个传感器不再将本地分类结果发送到进行融合过程的处理中心,而是从处理中心调度移动代理,在每个传感器节点执行融合过程。使用移动代理的优点是它可以实现渐进式准确性并具有任务自适应性。为了提高分类的准确性,我们实施了行为知识空间方法进行多模态融合。我们还修改了经典的 k-最近邻方法,使其适应分布式传感器节点网络中的协作分类。本文最后给出了基于现场演示的实验结果。
摘要 - 本文提出了一种利用移动代理在分布式传感器网络中进行协作目标分类的新计算范式。每个传感器不再将本地分类结果发送到进行融合过程的处理中心,而是从处理中心调度移动代理,在每个传感器节点执行融合过程。使用移动代理的优点是它可以实现渐进式准确性并具有任务自适应性。为了提高分类的准确性,我们实施了行为知识空间方法进行多模态融合。我们还修改了经典的 k-最近邻方法,使其适应分布式传感器节点网络中的协作分类。本文最后给出了基于现场演示的实验结果。
等效电路模型 (ECM)、电化学模型和经验退化模型 (EDM) 是常用的 SOH 估算模型。基于 ECM 的方法不研究电池内部复杂的物理化学反应过程,而是基于电路模型,采用滤波算法进行参数辨识,并更新模型参数进行 SOH 估算。例如,余 [3] 采用递归最小二乘 (RLS) 法辨识 ECM 的参数,然后采用自适应 H∞ 滤波算法估计 SOH。徐 [4] 也采用 RLS 辨识参数,然后估算 SOH。基于模型的方法虽然简单、计算成本低,但自适应性较差,且估算结果更多地依赖于参数辨识和滤波算法的有效性。
随着现代电力系统的发展,对继电保护技术提出了更高的要求,传统的继电保护和故障诊断技术已经不能满足电力系统不断发展的要求,基于人工智能技术的继电保护系统受到越来越多的关注。因此,本文首先分析了传统广播线路保护的弱点,利用人工智能的自适应性和自学习性,提出了基于人工智能的继电线路保护概念。结合人工神经网络,研究基于人工智能的继电保护系统,建立实验模型,并通过仿真实验进行验证。研究结果表明,对于子网络的ANN测试结果分析,子网络的实际输出与理想输出非常接近,误差不超过0.2%,系统性能良好,可靠性高。
针对入侵检测系统(IDS)检测速度慢、自适应性差、检测准确率不高等问题,提出一种基于自适应并行量子遗传算法的正则化互信息特征选择与多算子协同进化的检测算法(NMIFS MOP-AQGA)。为了对高维特征数据进行有效约简,采用NMIFS方法选择最佳特征组合,将最佳特征送入MOP-AQGA分类器进行学习训练,得到入侵检测器,将数据输入检测算法,最终产生准确的检测结果。在真实异常数据上的实验结果表明,NMIFS MOP-AQGA方法比现有检测方法具有更高的检测准确率、更低的误报率和更强的自适应性能,尤其对于小样本集更为有效。
摘要 - 本文提出了一种利用移动代理在分布式传感器网络中进行协作目标分类的新计算范式。每个传感器不再将本地分类结果发送到进行融合过程的处理中心,而是从处理中心调度移动代理,在每个传感器节点执行融合过程。使用移动代理的优点是它可以实现渐进式准确性并具有任务自适应性。为了提高分类准确性,我们实现了多模态融合的行为知识空间方法。我们还修改了经典的k最近邻方法,使其适应分布式传感器节点网络中的协作分类。本文最后给出了基于现场演示的实验结果。