2.2 城市物体检测 ................................................................................................................18 2.2.1 形态滤波 ...................................................................................................................... 18 2.2.2 插值滤波 ...................................................................................................................... 19 2.2.3 渐进致密化滤波 ............................................................................................................. 21 2.2.4 基于分段的滤波 ............................................................................................................. 22 2.2.5 建筑物检测 ...................................................................................................................... 23
•多粒核石墨是一种合成的复合材料,该复合材料是通过成型或挤出由煤焦油沥青或石油焦炭填充剂制成的糊状物和螺旋粘合剂的糊状物,然后进行热处理和重新爆炸以致密化。
●英国市政当局:100%续签率和获胜:例如Camden,Haringey,Sutton,St Albans,Birmingham,Chesterfield,Westminster Council●快速整合我们在德国网络致密化,数量内部化和协同效应的新回收资产:目标2024 EBITDA 3000万欧元€
摘要:激光定向能量沉积(LDED)过程中,快速熔化和凝固通常会导致孔隙和粗大柱状枝晶的出现,从而降低沉积合金的性能。本研究引入原位超声轧制(UR)作为增强LDED试件耐腐蚀性能的创新方法,深入研究了组织特征及其与耐腐蚀性能的关系。研究结果表明,LDED-UR试件的孔隙率和尺寸均有所减少。在LDED-UR工艺产生的剧烈塑性变形的影响下,出现了完全等轴晶粒,其平均尺寸减小至28.61 μm(而柱状晶粒的LDED试件为63.98 μm)。与LDED试件相比,LDED-UR试件的耐电化学腐蚀性能明显提高。这种耐腐蚀性能的提高可以归因于小孔隙率低、富铬铁素体相细小且分布均匀,以及由于晶粒边界致密而形成了致密厚的钝化膜。微观结构与腐蚀行为之间相关性的洞察为提高 LDED 样品的耐腐蚀性能开辟了一条新途径。
对齐的碳纳米管(CNT)复合材料由于其出色的机械和物理特性而引起了很大的兴趣。本文简要概述了对齐的CNT复合材料的合成方法。首先对制造排列的CNT纤维制造的三种主要方法进行了审查,包括湿旋,干旋和浮动催化剂。但是,由于其多孔结构和纤维内的CNT对齐不良,获得的CNT纤维具有有限的机械和物理性能。需要适当的处理以使纤维致密以增强其性质。然后讨论CNT纤维致密化的主要方法。为了进一步增强CNT纤维内的负载转移,始终使用聚合物浸润。综述了CNT纤维聚合物浸润的典型研究,所获得的复合材料的特性表明该复合制造方法优于常规分散方法。由于对齐的CNT复合材料通常是在长纤维或薄膜的结构中获得的,因此很难测量这些复合材料的热导率。开发了一个非晶格蒙特卡洛模型,以准确预测对齐的CNT复合材料的热导率。
脚注:1. 石油产量代表该地区所有地层的原油和凝析油产量。产量不仅限于致密地层。区域由所有选定的县定义,包括致密油层以外的地区。2. 天然气产量代表该地区所有地层的总(加工前)天然气产量。产量不仅限于页岩地层。区域由所有选定的县定义,包括页岩地层以外的地区。3. 本报告中使用的月平均钻机数量是根据贝克休斯报告的石油和天然气钻机总数的每周数据计算得出的。4. 新井是指上个月首次开始生产的井。每个井仅在一个月内属于新井类别。重新加工和重新完井的井不包含在计算中。5. 钻机数量数据滞后于生产数据,因为 EIA 观察到,预测某个月开始生产的新井数量的最佳指标是两个月前投入运营的钻机数量。
摘要:本研究从金属栅极面积、介电薄膜几何形状和厚度效应等方面研究了低介电常数 (low- k ) 材料的金属-绝缘体-半导体 (MIS) 电容器结构的可靠性特性。研究使用了两种低 k 材料,即致密和多孔低 k 薄膜。实验结果表明,与致密低 k 薄膜相比,多孔低 k 薄膜的击穿时间更短、威布尔斜率参数和电场加速因子更低、厚度依赖性击穿更弱。此外,还观察到介电击穿投影模型的偏差较大,且各个区域合并的击穿时间分布呈现单个威布尔图。研究还指出,不规则形状的金属栅极 MIS 电容器中多孔低 k 薄膜的介电击穿时间比方形和圆形样品中更长,这与持续电场的趋势相悖。因此,不规则形状的样品中存在另一种击穿机制,需要在未来的工作中进行探索。
图 1:A:NK358 pat-3::GFP 动物的肌肉细胞。虚线代表致密体(箭头),直线代表 M 线(箭头);B:pat-3::GFP; unc-52(kq748) 动物的肌肉细胞。虚线代表致密体(箭头),直线(箭头)代表 M 线。定位看起来与图 1A 相似;C:N2 肌肉细胞的罗丹明偶联鬼笔环肽染色。沿肌肉长度的肌动蛋白细胞骨架被染色(箭头);D:unc-52(kq748) 肌肉细胞的罗丹明偶联鬼笔环肽染色。细(肌动蛋白)丝(箭头)中没有明显异常。比例尺 = 10 µm。; E:unc-52 (kq748)(平均每秒 1.4454 次冲击,n=50)、unc-52(kq745)(平均每秒 1.339 次冲击,n=50)和 N2 野生型(平均每秒 1.99 次冲击,n=50)的冲击试验结果。 * 与 N2 野生型相比,p 值 < 0.05。
美国能源部化石能源办公室 (DOE/FE)、美国运输部管道和危险品安全管理局 (DOT/PHMSA) 和加拿大运输部危险品运输局 (TC/TDG) 委托桑迪亚国家实验室开展一项研究,调查目前在北美运输的原油(包括从致密地层中开采的原油)是否表现出与传统原油不同的物理或化学特性,以及这些特性与运输和处理过程中可能出现的燃烧危险有何关联。该研究确定了能够准确表征原油特性的原油采样和分析方法,然后应用这些方法来表征在大型池火和火球实验中燃烧的油。所测试的油涵盖了国内常规和致密(非常规)原油中观察到的一系列蒸汽压和轻馏分含量。结果与常见液态烃燃料的燃烧特性相结合,这些燃料的蒸汽压与此处测试的原油的蒸汽压重叠且远远超过其蒸汽压。该研究的主要发现包括:
我们的 HIP 产品制造厂每周都会生产和加工数吨材料,如工具钢、高速钢、不锈钢、钴和镍基合金。这是通过用 HIP 将金属粉末致密化成实心棒或坯料来实现的。这可以是简单的固体或双金属材料,用于制造螺杆或衬套段,与传统工具钢部件相比,可提高性能。