是作者/资助者,已授予 medRxiv 永久展示预印本的许可。 (未经同行评审认证)预印本此版本的版权持有者于 2021 年 11 月 20 日发布。;https://doi.org/10.1101/2021.11.19.21265383 doi:medRxiv 预印本
1. 纽约基因组中心,纽约州纽约市,美国。2. 纽约大学生物学系,纽约州纽约市,美国。† 这些作者贡献相同。 * 电子邮件:neville@sanjanalab.org 关键词:Prime 编辑、CRISPR、致病变异、ClinVar、人类遗传变异
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
人工智能已经建立了深度学习(DL)的扎实基础,尤其是在引入变压器体系结构的过程中,该体系结构引起了多个学科的研究人员的广泛关注。机器学习(ML)和DL,是人工智能的分支,已经越来越多地改变了各种领域的研究。一个区域受到的影响特别是微生物学(Obermeyer和Emanuel,2016年)。特别是微生物和传染病的复杂性和多样性使它们成为新型ML和DL技术的理想候选者。在此研究主题中,标题为“致病微生物组研究中的机器学习和深度学习应用”,我们收集了11种手稿的集合,这些手稿体现了ML和DL在致病微生物组研究领域的应用。这些收集的手稿主要是原始文章,可提供了解如何使用ML和DL来进一步了解致病微生物组的研究。目前,ML广泛用于预测模型的开发(Collins and Moon,2019年)。通过将ML或DL方法与预测模型相结合,本研究主题中的手稿强调了跨学科整合在理解与致病微生物组相关的疾病中的重要性,并促进了更好的健康以及人类和生态系统的健康。在这个研究主题中,Shao等。在迷你审查中探讨了致病性微生物与各种骨科条件之间的复杂相互作用,“探索致病微生物组在骨科疾病中的影响:机器学习和深度学习方法”。通过分析微生物群的数据集以及与宿主的相互作用,它们突出了ML和DL如何增强对骨质疏松和关节炎等疾病的理解,诊断和治疗。
摘要:不对称器官系统的许多方面都受致病生物体通路的对称模型 (R&L) 控制,但体节和肢芽等敏感物质需要避免其影响。由于对称和不对称结构由相似或附近的物质发展而来,并利用许多相同的信号通路,因此实现对称变得更加困难。在此,我们旨在从二维量子演算(q 演算、q 类似物或 q 疾病)的角度概括一些重要的测量,包括分形的维数和 Tsallis 熵(二维量子 Tsallis 熵 (2D-QTE))。该过程基于从量子演算的角度对 Tsallis 熵的最大值进行概括。然后,通过考虑最大的 2D-QTE,我们设计了一个离散系统。作为应用,我们利用 2D-QTE 描绘了一个受到致病生物 (DCO) 感染的离散动态系统。我们研究系统的正解和最大解。研究了平衡和稳定性。我们还将基于 2D-QTE 开发一种新颖的基本生殖率设计。
1 斯坦福大学医学系,美国加利福尼亚州斯坦福市;2 斯坦福大学流行病学与人口健康系,美国加利福尼亚州斯坦福市;3 密歇根大学公共卫生学院和内科学系卫生管理与政策系,美国密歇根州安娜堡市;4 南加州大学凯克医学院人口与公共卫生科学系,美国加利福尼亚州洛杉矶市;5 加州大学旧金山分校流行病学与生物统计学系和海伦·迪勒家庭综合癌症中心,美国加利福尼亚州旧金山市;6 密歇根大学内科学系和退伍军人事务安娜堡医疗保健系统临床管理研究中心,美国密歇根州安娜堡市;7 埃默里大学罗林斯公共卫生学院流行病学系,美国佐治亚州亚特兰大市
纳米颗粒是有吸引力的治疗工具,因为它们的独特特性,包括更准确的药物输送,改善生物利用度和增强的靶向治疗。Kumarasamy等。 对晚期纳米颗粒的临床应用进行全面综述,重点是完成的人类临床试验。 评论涵盖了许多医学领域,包括肿瘤学,传染病和神经病学。 发现的发现重点是基于纳米颗粒的疗法的显着进步,并改善了药物输送,生物可用性和有针对性的治疗(Khafaji等,2022),并解决了安全性和效率的解决方案,并强调了纳米疗法的变革性纳米疗法的变革性潜力。 在用于诊断和预测癌细胞生长的各种方法中,正常和癌细胞之间物理性质和机械行为的差异始终显着(Ghahramani等,2024; Ghoytasi等,2024)。 对这些纳米结构的药物化合物如何影响细胞的物理化学行为并将其与正常细胞区分开的一项有趣的研究可以为癌症诊断和治疗方面的研究人员提供宝贵的见解。 了解肿瘤生长强调了研究这些纳米结构在诊断,评估损害和治疗癌症中的作用的重要性。Kumarasamy等。对晚期纳米颗粒的临床应用进行全面综述,重点是完成的人类临床试验。评论涵盖了许多医学领域,包括肿瘤学,传染病和神经病学。发现的发现重点是基于纳米颗粒的疗法的显着进步,并改善了药物输送,生物可用性和有针对性的治疗(Khafaji等,2022),并解决了安全性和效率的解决方案,并强调了纳米疗法的变革性纳米疗法的变革性潜力。在用于诊断和预测癌细胞生长的各种方法中,正常和癌细胞之间物理性质和机械行为的差异始终显着(Ghahramani等,2024; Ghoytasi等,2024)。对这些纳米结构的药物化合物如何影响细胞的物理化学行为并将其与正常细胞区分开的一项有趣的研究可以为癌症诊断和治疗方面的研究人员提供宝贵的见解。了解肿瘤生长强调了研究这些纳米结构在诊断,评估损害和治疗癌症中的作用的重要性。For instance, estimating the tension in healthy tissues or evaluating the model ' s potential to study the effect of temperature on cancer cell growth can enhance the effectiveness of hyperthermia-based diagnosis and treatment methods ( Khafaji et al., 2019 ), as well as thermal radiation imaging techniques ( Dehghanian et al., 2023a ; Dehghanian et al., 2023b ).
结果:使用宏基因组测序系统和填充微生物群落分类学组成,总共注释了7,703种,而使用代谢物促进液则鉴定了50,046个代谢物。AS和健康对照患者之间发现了差异微生物和代谢物。此外,TNFI得到了确认,以部分恢复肠道菌群和代谢产物。对菌群和代谢产物进行了多词分析,以确定差异微生物和代谢产物之间的关联,鉴定出与抑制病原菌细菌ruminococcoccus gnavus以及促进促进性细菌细菌的抑制相关的化合物,这些化合物(如羟硫素醇和生物素)相关。通过实验研究,进一步确定了微生物与代谢产物之间的关系,并且探索了这两种类型的微生物对肠上皮细胞的影响以及炎症性细胞因子介绍介物-18(IL-18)。
Div> 1艾哈迈德·达兰大学药学学院,日奥卡塔55164,印度尼西亚2穆罕默迪亚·马塔拉姆大学药学系Mataram Mataram,Mataram 83127,印度尼西亚3,印度尼西亚3,印度尼西亚3临床药学系,台比医学院,台比医学院,台比医学院,台比, Dahlan University, Yogyakarta 55191, Indonesia 7 PKU Muhammadiyah Bantul Hospital, Bantul, Yogyakarta 55711, Indonesia 6 Department of Histology, Faculty of Medicine, University Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong 16911, Indonesia 10 Mataram 8 Department of Clinical Pathology和实验室医学,公共卫生和护理学院9临床实验室装置,萨尔迪托中央总医院博士,日晒和印度尼西亚55281,印度尼西亚10护理和健康科学学院,穆罕默迪亚大学emarang穆罕默德大学,塞米亚岛,塞米亚岛,塞米亚岛中部,印度尼西亚中部贾瓦,印度尼西亚11号。 90095,美国