尖峰蛋白致病性研究库Abdi A等人,“ SARS-COV-2与心肌细胞的生物相互作用:对心脏损伤和药物治疗的基本分子机制的见解。”药物。2022; 146:112518。 doi:10.1016/j.biopha.2021.112518 Aboudounya MM和RJ头,“ Covid-19和类似Toll的受体4(TLR4):SARS-COV-2可以结合并激活TLR4,以增加ACE2的表达,促进并促进并引起超in-inflammation。”介体插入式。2021; 2021:8874339。 doi:https://doi.org/10.1155/2021/8874339 Acevedo-Whitehouse K和R Bruno,“基于mRNA的疫苗疗法的潜在健康风险:一种假设:Med。假设2023,171:111015。doi:https://doi.org/10.1016/j.mehy.2023.111015 Ahn Wm等人,“ SARS-COV-2峰值蛋白会刺激鼠类和人类元群的大型型号的pkccase comcase tandy taimands comcase tangicants comcase tandys tandy ty24-NAdadphInds nodphicts tybccase。 2:175。doi:https://doi.org/10.3390/10.3390/antiox13020175 AIT-Belkacem I等,“ SARS-COV-2峰值蛋白会诱导双重性单核细胞激活,这可能会导致COVID 19的年龄偏见,” COVID 19的严重程度,”REP。2022,12:20824。doi:https://doi.org/10.1038/s41598- 022-25259-2 Aksenova ay等在Silico研究中提出的,” Int J Mol Sci。2022,23(21):13502。DOI:https://doi.org/10.3390/ijms232113502 Al-Kuraishy HM等人,“ SARS-COV-2感染患者的血液粘度的变化。”正面。Med。2022,9:876017。 doi:10.3389/fmed.2022.876017 al-Kuraishy HM等人,“ Covid-19中的溶血性贫血”。安。剧烈。Med。2022; 101:1887–1895。doi:10.1007/s00277-022-04907-7 Albornoz Ea等人,“ SARS-COV-2驱动NLRP3通过峰值蛋白中人类小胶质细胞中的nlrp3渗透性激活”,Mol。Psychiatr。(2023)28:2878–2893。doi:https://doi.org/10.1038/s41380-022-022-01831-0 Aleem A和Ahmed Nadeem,Coronavirus(Covid-19)疫苗(Covid-19)疫苗诱导的无症状血栓性血栓形成血栓形成血栓细胞(Vitt)(Vitt)(vitt)(vitt)(vaster niber Island),faster niber niber niber n eal eal elm:statpears elm:statpe elm:statpe e。 “ SARS-COV-2尖峰蛋白:发病机理,疫苗和潜在疗法”,感染49,第1期。5(2021年10月):855–876,doi:https://doi.org/10.1007/s15010-021-01677-8 Angeli Fet al。,“ Covid-19,Ace2和其他ACE2和其他血管紧张素酶的疫苗和表现。关闭“ Spike ecect”上的循环。” Eur J.实习生。2022; 103:23–28。doi:10.1016/j.ejim.2022.06.015 Angeli F等。2023年3月; 109:12-21。 doi:10.1016/j.ejim.2022.12.004 AO Z等人,“ SARS-COV-2 DELTA SPIKE蛋白增强了病毒式融合性和炎症性细胞因子的产生。” Iscience 2022,25,8:104759。DOI:10.1016/j.isci.2022.104759 Appelbaum K等人,“ SARS-COV-2 SPIKE-2 SPIKE依赖性血小板在COVID-19疫苗诱导的血小板诱导的血小板上的血小板激活中。”血液副词。2022 no。6:2250–2253。 doi:10.1182/bloodAdvances.2021005050506:2250–2253。doi:10.1182/bloodAdvances.202100505050
• 对野生鸟类和家禽(接种疫苗和未接种疫苗)进行病毒学监测将提供可用于确定高致病性禽流感状态和评估国家高致病性禽流感预防和控制计划以及疫苗与流行毒株的抗原匹配的分离物。应与国家和 WOAH 禽流感参考实验室以及 WOAH 和粮食及农业组织动物流感专家网络 (OFFLU) 禽流感匹配 (AIM) 计划共享野外病毒及其基因组信息,以进行基因组和抗原分析,评估现有灭活疫苗的保护作用,并根据需要提出及时更新疫苗的建议。
摘要 Koolen-de Vries 综合征 (KdVS) 的特征是过度社交、智力障碍和癫痫,是由 KANSL1 基因的致病变异引起的,该基因编码 NSL 复合物中的染色质调节剂,也直接在有丝分裂纺锤体微管稳定性中发挥作用。在这里,我们探索了 KANSL1 是否在纤毛中发挥作用,纤毛是一种富含微管的细胞器,对大脑发育、神经元兴奋性和感觉整合至关重要。利用 Xenopus 模型,我们发现 Kansl1 在发育中的纤毛组织中高度表达并定位在运动纤毛内。此外,Kansl1 耗竭会导致纤毛发生缺陷,而人类 KANSL1 可以部分挽救这种缺陷。根据这些发现,我们探讨了 99 名 KdVS 患者(年龄从 1 个月到 37 岁)中纤毛相关临床特征的患病率,包括结构性心脏缺陷、性腺功能低下和结构性呼吸缺陷。为了直接测试 KdVS 是否会导致人类纤毛功能障碍,我们在 11 名受影响的个体中测量了已证实的纤毛功能生物标志物鼻腔一氧化氮,并观察到与未受影响的家庭成员相比显着下降。总之,这项研究确定了 KANSL1 突变对 KdVS 的纤毛贡献。这项研究为越来越多的文献增添了新的内容,强调了纤毛与神经发育障碍的相关性,特别是与影响社交能力的障碍。展望未来,KANSL1 提供了一个独特的机会来研究社交过度的单基因机制,这可能有助于阐明社会行为的分子基础。简介 Koolen-de Vries 综合征 (KdVS) 是一种神经发育障碍,其特征是社交过度、面部特征畸形、癫痫、智力障碍、呼吸缺陷、肾脏缺陷、先天性心脏缺陷、脑积水和肌张力低下 (Koolen、Morgan 和 de Vries 2023)。KdVS 是由基因 KANSL1(KAT8 调节性 NSL 复合体亚基 1)内的致病变异或其相关基因组位点 17q21.31 的微缺失引起的(Moreno-Igoa 等人2015;Koolen、Morgan 和 de Vries 2023)。虽然 KANSL1 最广为人知的作用是作为 KAT8(赖氨酸乙酰转移酶 8)的染色质调节剂,
摘要 简介 双等位基因 PDX1 变异是导致孤立性胰腺发育不全和无胰腺外分泌功能不全的新生儿糖尿病 (NDM) 的罕见病因,文献中报道了 17 例。 研究设计和方法 为了确定这种罕见遗传病因引起的表型变异,我们调查了 19 名因双等位基因致病 PDX1 变异导致的 NDM 患者。 结果 在 19 名患者中,8 名 (42%) 被确诊患有外分泌功能不全,需要替代疗法。12 名患者(63.2%)有胰腺外特征,其中 8 名 (42%) 患有影响十二指肠和/或肝胆道的疾病。十二指肠发育缺陷与之前在小鼠中进行的 Pdx1 消融研究一致,该研究显示十二指肠前端发育异常。结论我们的研究结果表明,隐性 PDX1 变异可导致 NDM 综合征形式,凸显了对由 PDX1 变异导致的 NDM 患者进行胰腺外特征进行临床评估的必要性。
与大多数动物一样,昆虫与微生物有着密切的相互作用,这些微生物可能影响昆虫宿主的脂质代谢。在本章中,我们描述了迄今为止有关原核生物微生物在昆虫脂质代谢中起的作用的知名度。我们开始探索以内共生体为重点的微生物 - 脂质相互作用,并更具体地探索了在果蝇中不存在研究的肠道微生物群。然后,我们继续概述在常见且研究充分的wolbachia pipientis上所做的工作,这也与其他微生物有关。采用一个略有不同的角度,然后研究人类病原体(包括登革热和其他病毒)对蚊子载体脂质的影响。我们扩展了有关人类病原体的工作,并包括与内共生膜的相互作用
亨廷顿氏病(HD)主要影响大脑,导致混合运动障碍,认知能力下降和行为异常。它还引起涉及骨骼肌的外周表型。线粒体DYS功能已在HD模型的组织中报道,包括骨骼肌,以及来自HD患者的淋巴细胞和成纤维细胞浮雕。突变的亨廷顿蛋白(Muthtt)表达会损害线粒体质量控制并加速线粒体衰老。在这里,我们获得了新鲜的人类骨骼肌,这是一种有线后组织,自出生以来,在生理水平上表达突变的HTT等位基因,以及HTT CAG重复膨胀突变携带者的原代细胞系,并匹配健康的志愿者,以检查人类HD中是否存在这种线粒体表型。使用超深线粒体DNA(mtDNA)测序,我们显示了影响氧化性PHOS磷酸化的mtDNA突变的积累。组织蛋白质组学表明MTDNA维持的障碍,线粒体生物发生的增加,氧化磷酸化效率较低(较低的复合物I和IV活性)。在全长muthtt中表明了原代人细胞系,裂变诱导的线粒体应激导致正常的线粒体。相比之下,高水平的N末端Muthtt片段的Ex压缩促进了线粒体裂变,导致线粒体裂变较慢,动态线粒体较低。由于体细胞核HTT CAG不稳定性引起的高水平Muthtt片段的表达会影响线粒体网络动力学和线粒体,从而导致致病性mtDNA突变。我们表明,突变体HTT的终生表达引起的线粒体表型,指示新鲜的有丝分裂后人类骨骼肌的mtDNA不稳定性。因此,基因组不稳定性可能不限于核DNA,在核DNA中,它会导致在诸如纹状体神经元之类的特别脆弱细胞中HTT CAG重复长度的体细胞扩张。除了针对因果突变的努力外,促进线粒体健康可能是治疗HD等DNA不稳定性疾病的互补性层次。
亨廷顿氏病(HD)主要影响大脑,导致混合运动障碍,认知能力下降和行为异常。它还引起涉及骨骼肌的外周表型。线粒体DYS功能已在HD模型的组织中报道,包括骨骼肌,以及来自HD患者的淋巴细胞和成纤维细胞浮雕。突变的亨廷顿蛋白(Muthtt)表达会损害线粒体质量控制并加速线粒体衰老。在这里,我们获得了新鲜的人类骨骼肌,这是一种有线后组织,自出生以来,在生理水平上表达突变的HTT等位基因,以及HTT CAG重复膨胀突变携带者的原代细胞系,并匹配健康的志愿者,以检查人类HD中是否存在这种线粒体表型。使用超深线粒体DNA(mtDNA)测序,我们显示了影响氧化性PHOS磷酸化的mtDNA突变的积累。组织蛋白质组学表明MTDNA维持的障碍,线粒体生物发生的增加,氧化磷酸化效率较低(较低的复合物I和IV活性)。在全长muthtt中表明了原代人细胞系,裂变诱导的线粒体应激导致正常的线粒体。相比之下,高水平的N末端Muthtt片段的Ex压缩促进了线粒体裂变,导致线粒体裂变较慢,动态线粒体较低。由于体细胞核HTT CAG不稳定性引起的高水平Muthtt片段的表达会影响线粒体网络动力学和线粒体,从而导致致病性mtDNA突变。我们表明,突变体HTT的终生表达引起的线粒体表型,指示新鲜的有丝分裂后人类骨骼肌的mtDNA不稳定性。因此,基因组不稳定性可能不限于核DNA,在核DNA中,它会导致在诸如纹状体神经元之类的特别脆弱细胞中HTT CAG重复长度的体细胞扩张。除了针对因果突变的努力外,促进线粒体健康可能是治疗HD等DNA不稳定性疾病的互补性层次。
近期爆发的牛高致病性 H5 禽流感 (HPAI) 病毒现已在美国广泛传播,并蔓延至其他哺乳动物,包括人类。已报告数例人类病例,临床症状包括结膜炎和呼吸道疾病。然而,大多数感染者报告的症状为轻度至中度,而之前报告的人类高致病性 H5Nx 感染死亡率高达 50%。我们最近报告称,对 A/Puerto Rico/08/1934 H1N1 病毒具有免疫力的小鼠可免受高致病性 2.3.4.4b 型 H5N1 流感病毒的致命攻击。在这里,我们证明感染 2009 年大流行 H1N1 病毒株 A/California/04/2009 (Cal09) 或接种减毒活流感疫苗 (LAIV) 的小鼠对致命的 A/bovine/Ohio/B24OSU-439/2024 H5N1 病毒攻击具有中等至高度保护。我们还观察到,具有混合预先存在的免疫力(来自 LAIV 疫苗接种和/或 Cal09 感染)的雪貂对从猫中分离出的 HPAI H5N1 进化枝 2.3.4.4b 病毒具有保护作用。值得注意的是,这种保护作用独立于任何可检测到的针对 H5N1 病毒的血凝抑制滴度 (HAI)。为了探索可能有助于保护的因素,我们使用之前发布的 H1N1 毒株序列进行了详细的 T 细胞表位图谱分析。这项分析表明,我们牛 HPAI H5N1 病毒株内部蛋白质的氨基酸序列具有高度保守性。这些数据强调了探索有助于预防 HPAI H5N1 病毒的其他因素的必要性,例如除了 HA 抑制或中和抗体之外的记忆 T 细胞反应。
Bambusicolous mycopathogens in China with an update on taxonomic diversity, novel species, pathogenicity, and new insights Yang CL 1,# , Xu XL 1,2,# , Zeng Q 1,# , Liu LJ 1 , Liu F 1 , Deng Y 1 , Wang FH 1 , Sun QR 1 , Jeewon R 3,8 , Hyde KD 4,5 , Jayawardena RS 4 , Mckenzie EHC 6 , Wanasinghe DN 7,9 , Liu YG 1,* , Xiao QG 2 , Han S 1 , Yang H 1 , Li SJ 1 , Liu L 1 , and Xie JL 1 1 Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130,四川,中国2林业研究所,成都农业与林业科学学院,成都611130,四川,中国3号健康科学系,毛里求斯科学系,毛里求斯大学,毛里求特大学,réduius80837,Mauritius 4 chian 4 chian fungal the fungal the fungal fungal fungal luuang raang raang raang raang raang ra ruang ra fuuang, 5植物学和微生物学系,科学学院,国王沙特大学,P.O。Box 22452, Riyadh 11495, Saudi Arabia 6 Landcare Research New Zealand, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand 7 Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China 8 Department of Zoology, College of Science, King沙特大学框2455,Riyadh 11495,沙特阿拉伯框2455,Riyadh 11495,沙特阿拉伯
动物高致病性禽流感 A(H5N1) 病毒:预防、监测和公共卫生调查的临时建议 | 禽流感 | CDC ;对疑似感染新型甲型流感病毒且与严重疾病相关或有可能导致人类严重疾病的患者进行样本采集和检测的临时指导 | 禽流感 | CDC