摘要:航空运输是一个庞大而复杂的系统,具有涌现性和自组织性,对其进行建模具有重要意义。为了更准确地对航空运输系统从物理设施到交通应用进行建模,本文构建了三层网络,包括航线网络、城市对航线网络和航班运营网络,其中航线网络为物理层,城市对航线网络和航班运营网络为应用层。此外,利用复杂网络理论这一有力工具讨论了三层网络的拓扑特性。此外,考虑到城市对航线路径的多样性,提出了一种基于模拟退火的框架来优化航线网络上每条城市对航线的路由路径,以缓解航线网络的交通拥堵,其中采用了一种精细的扰动解方法,即移除后选择(SAR)。实验结果表明,与默认路由路径、最短路由路径、随机路由路径相比,提出的路由优化策略可以分别使航线网络最大交通流量减少2.4%、4.6%、4.8%,表明提出的优化方法对缓解航线网络交通拥堵具有良好的效果。
摘要:机载合成孔径雷达(Airborne Synthetic Aperture Radar,Airborne SAR)利用机载定位定向系统(POS)获取的飞行器飞行参数以及飞行器与目标的相对位置信息,对重点目标及区域进行精确定位。飞行过程中,飞行器会因为大气湍流等原因偏离理想飞行路径,导致计算结果与实际目标位置出现偏差。为了提高目标定位精度,需要研究飞行器运动误差对目标定位误差的影响。本文从线性距离-多普勒算法(RDA)的角度探讨了单视机载SAR的定位精度,并在多视机载SAR定位模型的基础上,推导了多视机载SAR定位误差传递模型。在此基础上,详细分析了影响两种定位方法定位精度的主要因素,定量揭示了多视角机载SAR定位方法较单视角机载SAR定位方法提高目标定位精度的机理,解决了多视角机载SAR优化定位的航向规划问题。研究成果可为定位误差影响因素分析及机载SAR定位误差校正提供理论支撑。
摘要:在异常或紧急情况下,意外事件引起的航路变更往往会对操作人员在飞行任务中的认知和行为产生不利影响。在这种情况下,尤其有必要研究通常基于常规环境设计的交互显示效用。本研究旨在探讨航路变更和显示设计对模拟飞行任务中操作人员态势感知、任务绩效和心理负荷的影响。24 名被试参加了一项实验,被试被要求在航路按计划和航路变更两种条件下执行三种显示设计的模拟飞行任务。采用主观测量、行为测量和眼动测量来评估被试的态势感知、任务绩效和心理负荷。结果表明,由于注意力资源的需求和供应之间的差距,意外航路变更增加了心理负荷,同时也降低了态势感知和任务绩效。在应对异常情况下的意外事件时,应重点降低操作人员注意力资源的需求。此外,合理的信息布局,如关键决策信息的中心布局设计,对提高异常情境下的态势感知和任务绩效比信息显著性更重要。然而,具有高显著性的指标可能对异常情境下的态势感知和任务绩效产生不利影响。
由运营数字化实现(Holmström、Holweg、Lawson、Pil 和 Wagner,2019 年)。Frontlog 是一种维护调度实践,它为动态重新安排计划任务创造了机会,以释放容量来执行计划外任务。这种重新安排选项在飞机航线维护中尤其有吸引力,因为随机技术故障导致的计划外任务可能会导致飞机(代价高昂)停飞。为了说明这种做法,考虑一架到达枢纽位置进行预定航线维护的飞机。将有几个重复的计划维护任务,每个任务的截止日期都基于上次执行的时间。当前的调度实践通常寻求最大化维护间隔(例如,Bas¸dere 和 Bilge,2014 年;Sarac、Batta 和 Rump,2006 年)。因此,这将是执行大多数计划任务的最后维护机会。任何延误都会导致积压,从而导致飞机停飞并扰乱航空公司的运营。但是,有了前期任务,有些任务的截止日期可以推迟到未来的维护机会,而不会超过截止日期并导致飞机停飞。如果飞机出现技术故障,前期任务可以作为可以重新安排的任务的缓冲,从而释放维护能力以应对紧急需求。在我们的设计中,可以重新安排而不违反截止日期的计划任务份额成为 OM 的决策变量,maki
路线服务公司拥有庞大且地理分散的员工队伍,他们每天都要面对各种不同的安全隐患。我们 53% 的员工在路线办公室和站场工作,40% 的员工在中央办公室和培训中心工作。一线员工占我们总员工队伍的 7%。通过积极参与 Network Rail 安全社区,我们可以学习和分享最佳实践,让我们的员工更加安全。之前的目标是在 CP6 结束时将 LTIFR 目标降至 0.1 以下,现在将根据国家记分卡衡量标准用死亡加权指数 (FWI) 取代,我们期望所有团队都能始终保持良好的表现。
图 11-5: Hz_LLR_01 故障树 .............................................................................................. 108 图 11-6: Hz_LLR_05a 故障树 .............................................................................................. 113 图 11-7: Hz_LLR_05b 故障树 .............................................................................................. 116 图 11-8: Hz_LLR_010a 故障树 ............................................................................................. 120 图 11-9: Hz_LLR_010b 故障树 ............................................................................................. 123 图 11-10: Hz_LLR_015 故障树 ............................................................................................. 127 图 11-11: Hz_LLR_20 故障树 ............................................................................................. 129 图 11-12: Hz_LLR_50 故障树 ............................................................................................. 132 图 11-13: Hz_LLR_55 故障树 .............................................................................................. 138 图 11-14:Hz_LLR_60 故障树 .............................................................................................. 142 图 11-15:Hz_LLR_065 故障树 .............................................................................................. 146 图 11-16:Hz_LLR_70 故障树 ...................................................................................................... 148 图 17:总体安全论证 ............................................................................................................. 155 图 18:考虑不同生命周期阶段的安全论证结构和
摘要 —本文介绍了匈牙利航线系统的演变,并概述了成功引入 HUFRA(匈牙利自由航线空域)所采取的步骤。根据目前的数据,引入 HUFRA 大大降低了飞机运营成本、燃料消耗、污染物排放和飞行时间。然而,它对空域容量的影响在很大程度上取决于给定空域的交通同质性水平。鉴于上述情况,HungaroControl 还参与并进行了验证练习,以评估跨境 FAB CE 自由航线空域对交通流量和人员绩效的影响。最后一部分重点关注匈牙利地区,介绍了研究结果,重点关注人员绩效和冲突点。