地热是在能量过渡时期强化开发的可再生能量之一。印度尼西亚是世界第二大地热潜力的国家,地热潜力为23,765.5 MWE。在M.M.S.C.F场中被归类为以二进制周期技术开发的液体主导的地热火山系统。在二进制周期中使用常规工作流体的能源效率低。地热纳米流体颗粒由两个或多个纳米大小的颗粒(1-100 nm)组成,这些颗粒被悬浮并溶解在碱性流体中,以增加热导率并在热交换器中加速热传递。但是,该技术的损失包括大型资本支出的成本(CAPEX)。本研究应用CuO -Al 2 O 3来提高热交换器的能量效率,与导热率的增加成正比。本研究中使用的方法是一种定量分析,通过将常规二进制周期系统与M.M.S.C.F现场热交换器中的二元循环混合纳米颗粒流体系统进行比较,并基于先前的文献研究。这项技术的优点是,由于导热率值的增加而增加的传热速率,发现杂交纳米粒子流体的导热率值与0.56 W/M°的基本流体相比,杂交纳米粒子流体的热传导率增加了0.79 w/m°C,增加了23%。基于经济指标的计算结果,付费时间(POTS)和PI,IRR和NPV技术的价值比常规二进制周期更积极。这项研究的效果将对该行业提高二进制周期的效率有益。
1物理系,特里斯特大学,Strada Costiera,11,34151,意大利Trieste 2 Istituto Nazionale di Fisica fisica fisica fisica Nucee,Trieste部分,Valerio 2,34127 Trieste,意大利,意大利3 dipartimento 3 dipartimento di fisicica di Fisita深圳518048,中国5个物理系华盛顿大学,圣路易斯,密苏里州63130,美国6肯尼迪肯尼迪物理主席,查普曼大学,加利福尼亚州奥兰治市92866,美国7量子研究所,查普曼大学研究所,Chapman University,Chapman University,Orange Orange,加利福尼亚州92866,美国92866,美国92866,美国92866,纽约,纽约,纽约,纽约。 Grenoble Alpes,中心国家德拉·雷·雷·科学(Center National de la Recherche Scientife),格勒诺布尔INP,Intitutnéel,38000法国格勒诺布尔,法国10 Majulab,CNRS-UCA-NUS-NTU-NTU国际联合研究实验室11
摘要。液晶量子点(LC-QD)复合材料是有希望的新材料,用于显示,能量收集和光子学中的许多应用。在目前的工作中,报道了液晶(LCS)混合物中的量子分散体。以相等的比例使用了两种LC,即胆汁淤积棕榈酸酯(胆汁淤积97%)和4'-Pentyl-4-二苯基碳硝基(Nematic,98%)的组合,并将CDS量子点分散在这种混合物中。使用差分扫描量热法(DSC),可见的Ultra-Violet(UV-VIS)光谱,Fabry-Perot散射研究(FPSS)以及傅立叶变换基础(FTIR)光谱法(FTIR)光谱法分析了这种新的LC-QD复合系统的热,光学和结构特性。结构研究表明,QD在LC矩阵内而不是在表面积上均匀分散。观察到量子点色散会增加LC混合物的强度。它还改变了影响LC-QD复合系统整体性能的LC混合物的相位行为。目前的发现对具有改进的光学响应的显示器和光子设备的设计非常有帮助。
远程网络节点共享的量子纠缠是有望在分布式计算,加密和感应中应用的宝贵资源。然而,由于纤维中的各种反矫正机制,通过填充途径分发高质量的纠缠可能是具有挑战性的。尤其是,光纤维中的主要极化解相机制之一是极化模式分散(PMD),这是通过随机变化的双向反射方式对光脉冲的失真。为了减轻纠缠颗粒中的分解作用,已经提出了量子纠缠蒸馏(QED)算法。一个特定类别的QED算法的一个特定类别之所以脱颖而出,是因为它在所涉及的量子电路的大小和粒子之间的纠缠初始质量上都具有相对放松的要求。但是,由于所需颗粒的数量随着蒸馏弹的数量而成倍增长,因此有效的复发算法需要快速收敛。我们提出了一种针对受PMD降级通道影响的光子量子置量对的复发QED算法。我们提出的算法在每一轮蒸馏中都实现了最佳的确定性以及最佳成功概率(根据实现最佳限制的事实)。最大化的实现可提高从线性到二次的蒸馏弹数,从而提高了效能的收敛速度,因此显着减少了回合的数量。结合了达到最佳成功概率的事实,所提出的算法提供了一种有效的方法,可以通过光纤维具有很高的纠缠状态。
Quantum密钥分布(QKD)是未来信息安全的关键技术。在多个用户中开发简单有效的方法来估算QKD,对于扩展QKD在通信网络中的应用很重要。在此,我们提出了一种对称色散光学QKD的方案,并基于IT展示了基于纠缠的量子网络。在实验中,最终用户通过波长和空间分层多路复用共享了宽带纠缠的光子对源。将产生的量子对较广的光子对分为16个组合频率。每个通道组合中的光子对支持一个被动梁分离器与八个用户的完全连接的子网。最终,它表明,基于纠缠的QKD网络超过100个用户可以由此体系结构中的一个纠缠光子对来支持。它对具有较大用户数量的本地量子网络的应用具有很大的潜力。
对乐队结构工程的不懈追求仍然是固态研究中的一个基本方面。在这里,我们精心构建了人工kagome的潜力,以生成和控制石墨烯的多个狄拉克带。这种独特的高阶潜在具有自然的多种组件,从而通过不同的潜在贡献来重建带结构。结果,每个以不同的分散体为特征的频带成分,响应人造电势的变化而在不同速度下的能量变化。因此,我们观察到多个狄拉克峰的光谱重量重新分布。此外,磁场可以有效地削弱超晶格效应并重新激活内在的狄拉克带。总的来说,我们实现了分散选择性带工程的积极性,该功能将大大提高频段设计的自由度。
脉冲星的探测需要耗费大量的计算资源。传统方法主要侧重于从记录的数据中探测脉冲星。然而,数字处理技术的进步,尤其是 FPGA 和 GPU 的开发,使人们对实时脉冲星探测的兴趣日益浓厚,其显著优势在于可以观测罕见的瞬态事件、提高天文台的观测效率等。为了实现这样的系统,需要仔细考虑资源分配,尤其是在向更通用的实时脉冲星搜索引擎扩展时。本研究项目迈出了实现这一目标的第一步,应用一种通用数学方法,使用二阶延迟网络实现任意色散曲线,并将其作为 FIR 和 IIR 滤波器在脉冲星后端实现,从而可以比较资源利用率。
光纤波导:光纤的传输特性:衰减。石英玻璃光纤中的材料吸收损耗:固有吸收、外部吸收。线性散射损耗:瑞利散射、米氏散射。非线性散射损耗:受激布里渊散射、受激拉曼散射。光纤弯曲损耗、纤芯和包层损耗。色散:模内色散:材料和波导色散。模间色散:多模阶跃折射率光纤、多模渐变折射率光纤。光纤总色散。光源、接头和连接器:发光二极管 (LED):原理。LED 结构:平面 LED、圆顶 LED、表面发射 LED、边缘发射 LED、超辐射 LED。量子效率和 LED 功率、LED 调制。LED 特性:光输出功率、输出光谱、调制带宽、可靠性。激光二极管:原理、光反馈和激光振荡、激光振荡的阈值条件。激光类型:分布式反馈激光器、单模激光器。
摘要:由光子晶体纤维(PCF)组成的表面等离子体共振(SPR)传感器设计用于检测低浓度的液体。出色的传感特性归因于表面等离子体偏振子(SPP)模式的分散点(DTP)的灵敏度增强。传感器由两个相同且结构上简单的D形PCF以及与分析物直接接触在抛光表面上的等离子薄膜组成。折射率(RI)的变化导致退化等离子体峰分裂,从而通过测量峰分离来监测分析物浓度变化。在1.328 RIU和1.33 RIU之间,传感器的超高灵敏度为129,800 nm/riU,比未敏化的单个D形结构高37.22倍。与在覆层模式DTP附近运行的纤维光栅传感器相比,剪接的双D形PCF仍然具有高度高的机械强度。此外,可以通过调节缝隙宽度来更改传感器的RI检测范围。在0g/l至100 g/l的氯化钠浓度范围内,平均敏感性为4.38 nm/g·l -1,在0g/l至20 g/l的血红蛋白浓度范围内,0g/L至100 g/l和20.85 nm/g·l -1。我们的结果表明,基于PCFS的SPR传感器在多种应用中具有较大潜力,尤其是生物化学,因为它具有出色的灵敏度,结构性的简单性和可调节的检测范围。
抽象光纤由玻璃或塑料制成,非常薄,通常用于以光的形式传输信号。宽带服务借助光纤的最大进步,因为它在长距离通信中提供了最快的数据传输速度。色散是光纤通信系统中的一个重要问题,它通过扩大导致脉冲失真的信号来降低发送信号的性能质量,从而提高了位误差和信号降解的速率。光纤网络的另一个限制是其通道容量。本书章节简要介绍了光纤的分散概述和与分散管理有关的光学传播链接中的概述。为了防止光学元件的色散,使用色散校正。避免过度的脉冲时间扩展或信号失真可以帮助您实现此目标。对于光纤连接,分散校正是至关重要的。因此,在检测信号之前,必须补偿色散。在本章中,我们简要介绍了光纤中的分散管理。关键字:光纤;分散管理;光学通信