集体研究确定了创伤后应激障碍患者的关键脑电图签名,包括Abnor Mally降低α(8-12 Hz)节奏。,我们在20周内进行了创伤后应激障碍患者的α异步性神经反馈的20条,双盲,随机对照试验。我们的目标是通过研究神经反馈治疗的函数来提供基础潜在的临床改善的机理证据(即,创伤后应激障碍脑节律(即α振荡)的变化。我们随机分配了对创伤后应激障碍的主要诊断(n = 38)的参与者(n = 20)或假控制组(n = 18)。用于记录实验后和Sham-Control后脑反馈前后治疗前后的多通道脑电图帽记录整个级别静止状态的活性。与年龄/性别匹配的神经型健康对照组(n = 32)相比,我们首先观察到基线后基线时相对α源功率显着降低,主要降低了基线的源能力(n = 32)。治疗后,我们发现实验性神经反馈组中只有创伤后应激障碍患者在基线时表现出异常低的α功率的区域显示出明显的α重新同步。这项随机对照试验提供了长期证据,表明“ alpha反弹效应”(即并行,我们仅在比较基线与治疗后的基线(Cohen's D = 0.77)和三个月的随访评分(Cohen's D = 0.75)时,仅在实验性神经反馈组中显着降低了创伤后应激障碍的严重程度评分,并以三个月的后续时间进行60.0%的后续率。总体而言,我们的结果表明,神经反馈训练可以挽救病理学上降低的α节律性,α节奏性是一种功能性生物标志物,与创伤后应激序列中的高伴和皮质抑制症状反复相关。稳态α重新同步)发生在先前与创伤后应激障碍有关的默认模式网络的关键区域内。
摘要:疲劳驾驶是导致交通事故的重要因素之一,长期单调的驾驶易导致驾驶员注意力与警觉性下降,表现出疲劳效应。本文提出一种基于脑电图(EEG)源信号的有向脑网络角度揭示驾驶疲劳对大脑信息处理能力影响的方法。基于源分析得到的EEG信号电流源密度(CSD)数据,采用有向传递函数构建疲劳驾驶的有向脑网络。随着驾驶时间的增加,平均聚类系数和平均路径长度逐渐增加,而大部分节律的全局效率逐渐降低,表明深度驾驶疲劳增强了大脑局部信息的整合能力,同时削弱了大脑的整体能力。此外,因果流分析发现,清醒状态和驾驶疲劳状态下的电极分布存在明显差异,主要分布在前部和后部的几个区域,尤其是在θ节律下。研究还发现,在驾驶疲劳状态下,前部区域接收后部区域信息的能力明显变差。这些发现可能为揭示驾驶疲劳的潜在神经机制提供理论基础。
摘要:心理疲劳因其严重的负面影响而受到广泛研究。但心理疲劳前后任务切换的神经机制如何仍是一个问题。为此,本研究旨在利用脑功能网络特征来探索这一问题的答案。具体来说,记录了20名被试的任务状态脑电信号。任务包括400秒的2-back任务(2-BT),接着是6480秒的心算任务(MAT),然后是400秒的2-BT。根据选定的任务切换状态提取和分析网络特征和功能连接,在心理疲劳之前从Pre_2-BT到Pre_MAT,在心理疲劳之后从Post_MAT到Post_2-BT。结果表明,根据网络特征的显著变化和在Pre_2-BT和Post_2-BT之间使用支持向量机(SVM)获得的98%的高分类准确率,长期MAT成功诱发了心理疲劳。当任务从Pre_2-BT切换到Pre_MAT时,所有网络特征中delta和beta节律均出现显著变化,选定的功能连接呈现增强趋势。而当任务从Post_MAT切换到Post_2-BT时,beta节律的网络特征和选定的功能连接与心理疲劳前任务切换的趋势相反。我们的研究结果为理解大脑在任务切换过程中的神经机制以及在心理疲劳过程中的神经机制提供了新的见解。
摘要:日本最近精神疾病的发病率有所上升。被定义为“高敏感人群 (HSP)”。HSP 不是精神疾病的诊断,而是指个人气质。然而,这组特征与注意力缺陷/多动障碍和广泛性焦虑症具有共同特征。HSP 的核心特征是高度的同理心。对一个人的 HSP 状态的评估是通过心理问卷上的自我报告进行的,但由于这些测量依赖于测试者的自我意识,因此这些测量的分数可能不准确。因此,在本研究中,通过使用脑电图测量情绪感染和镜像系统活动来评估同理心。将结果与参与者在高敏感人群量表 (HSPS) 上的得分进行比较。我们发现 HSPS 分数为 100 或更高的参与者表现出 50% 或更高的事件相关去同步 (ERD),表明镜像系统活动。此外,HSPS 评分为 100 或更高的参与者在看到快乐面孔的图像时表现出较低的 alpha 波段功率值。由于 alpha 波与放松的非唤醒状态有关,因此可以推断,快乐的面孔会引发快乐的感觉,增加唤醒并降低 alpha 节律。因此,研究发现 HSPS 评分越高,镜像系统活动和情绪感染的水平就越高。关键词:alpha 节律、情绪感染、ERD、高敏感人群、镜像系统活动 1. 引言
2022 年,世界正面临新的粮食安全危机,太多人挨饿、挨饿或饮食中缺乏关键营养。气候变化加剧了农民面临的挑战:一方面极端天气更加极端,另一方面扰乱了潜在的季节节律和基线。水资源面临越来越大的压力,害虫和疾病既破坏了我们邻国的生产力,也威胁着澳大利亚的工业。COVID-19 有力地提醒我们,为了保护人类健康,我们需要更好地了解与动物健康和环境健康的相互作用。
脑部计算机界面(BCI)是以可靠的方式作为人机相互作用的外在途径(Birbaumer,2006)。残疾人通过神经活动来控制外部设备是有效的(Buch等,2008)。中风患者特别是运动障碍患者,能够执行BCI临床康复任务(Meng等,2016)。在这种处理中,感觉运动节律变化用作主动干预的神经系统调节(Mane等,2019)。在康复期间,要求患者尝试或想象进行运动。然后,电动机尝试(MA)或运动图像(MI)-BCI系统将通过训练有素的分类器基于先前的数据集(Pillette等,2020年),输出同步的感觉生物反馈(例如机器人臂恢复)。在干预中,功能运动是由神经生理活性显着启发的(Xu等,2014)。这是大脑可塑性和功能恢复的持续过程(Remsik等,2019)。最近的研究报道了使用长期感觉运动节律(SMR)-BCI干预措施改善中风患者的肢体运动(Ramos-Murguialday等,2013; Pichiorri等,2015; Bundy等,2017)。尽管如此,BCI康复受到较差的效率识别算法和模型个性变异性的限制(Grosse-Wentrup等,2011)。相关的工作证明,BCI解码精度对于康复结果不足(Mane等,2020)。此外,BCI反馈的失败也减少了受训者的信心(Foong等,2019)。因此,应对模式识别和模型校准进行各种改进,以提高临床应用中的SMR-BCI性能。
抽象简介房颤(AF)是全球最常见的心律不齐。直接的心脏versionion通常用于恢复AF患者的鼻窦节律。胸部压力可以通过减少经胸阻抗和增加心脏能量递送来改善心脏version的成功。我们旨在通过直接电流心动过速评估常规胸压的功效和安全性。方法和分析多中心,双盲(患者和结果评估),位于澳大利亚新南威尔士州的随机临床试验。患者将被随机分配1:1以控制和介入臂。对照组将在最后一次冲击中获得150 J,200 J,360 J和360 J的四个顺序双相冲击,直到心脏抗化成功。干预组将从第一次除颤后的胸部压力中获得相同的冲击。垫子将放置在前后位置。心脏version的成功将定义为冲击后1分钟后的窦性节奏。主要结果将是提供总能量。次要结果将取得第一次冲击,以实现心脏versio vastio cassioversion ECG时的心脏抗化,经胸阻抗和鼻窦节律。伦理和传播伦理批准已通过研究伦理治理信息系统在所有参与站点得到证实。该试验已在澳大利亚新西兰临床试验登记册(ACTRN12620001028998)上进行了注册。将提供良好的分析建议的知名研究人员,可以使用识别患者级别的数据。识别患者级别的数据。
升级有前途的航空综合体的机载设备时,一项重要任务是评估操作人员在控制飞机时的状态 [1, 2]。飞行重力、工作负载等因素会显着影响飞行任务的质量。评估人类操作员状态的方法之一 [3-5] 是研究他的脑电图,特别是根据疲劳、入睡等迹象。脑电图 [6, 7] 可以定性和定量分析人脑的功能状态及其对各种刺激或缺乏刺激的反应。因此,对大脑阿尔法节律的分析有助于确定平静清醒状态与注意力和心理活动增加之间的界限。 1 这项工作得到了俄罗斯基础研究基金会的支持,项目编号:18-08-01142。
我们正在寻找一位有上进心的生物医学工程、生物工程、生物系统工程、电子工程或相关领域的博士生加入 4DmyoSync 项目,这是一项前沿计划,旨在开发 4D 微流体心肌平台,用于对儿科儿茶酚胺多形性室性心动过速 (CPVT) 患者进行个性化药物检测和节律同步。这个变革性平台集成了生物传感器、机器学习 (ML) 和工程窦房结 (SAN),为突变特异性药物检测和精准医疗树立了新标准。
•患者必须诊断出稳定的症状性慢性心力衰竭(例如NYHA II,III或IV心力衰竭); •左心室射血分数的记录小于或等于35%; •患者必须处于鼻窦节律,静息心率大于或等于每分钟70次; •血压的记录大于或等于90/50 mmHg; •对先前治疗,不耐受或禁忌症的文献记录至少一种β-释放剂(例如卡维丝醇,美托洛尔或Bisoprolol)。儿科患者(6个月至18岁以下):