摘要 目的.脑机接口(BCI)低效性意味着将有10%到50%的用户无法操作基于运动想象的BCI系统。值得注意的是,之前对BCI低效性的研究几乎都是基于感觉运动节律(SMR)特征的测试。在本研究中,我们利用SMR和运动相关皮层电位(MRCP)特征评估了BCI低效性的发生情况。方法.在不同的日子里,对93名受试者记录了2个会话中的静息态和运动相关脑电信号数据集。采用公共空间模式(CSP)和模板匹配两种方法提取SMR和MRCP特征,并采用赢家通吃策略利用线性判别分析的后验概率来评估模式识别,以结合SMR和MRCP特征。主要结果.结果表明,两类特征表现出高度的互补性,与它们的弱相互相关性相符。在二分类问题(右脚 vs. 右手)中 SMR 特征准确率较差(< 70%)的受试者组中,SMR 和 MRCP 特征的组合将平均准确率从 62% 提高到了 79%。重要的是,特征组合获得的准确率超过了效率低下阈值。意义。SMR 和 MRCP 的特征组合在 BCI 解码中并不新鲜,但使用 SMR 和 MRCP 特征对 BCI 效率低下进行大规模可重复的研究是新颖的。MRCP 特征对 SMR 特征准确率较差(< 70%)和良好(> 90%)的两个受试者组提供相似的分类准确率。这些结果表明,SMR 和 MRCP 特征的组合可能是降低 BCI 效率低下的一种实用方法。然而,在本研究之后,“BCI 效率低下”可能更恰当地被称为“SMR 效率低下”。
摘要:实验表明,在运动想象 (MI) 任务中,左背外侧前额叶皮层 (DLPFC) 被激活,但其功能作用需要进一步研究。在这里,我们通过对左侧 DLPFC 施加重复经颅磁刺激 (rTMS) 并评估其对大脑活动和 MI 反应潜伏期的影响来解决这个问题。这是一项随机、假对照的 EEG 研究。参与者被随机分配接受假刺激 (15 名受试者) 或真实高频 rTMS (15 名受试者)。我们进行了 EEG 传感器级、源级和连接分析,以评估 rTMS 的影响。我们发现,对左侧 DLPFC 的兴奋性刺激通过它们之间的功能连接增加了右侧楔前叶 (PrecuneusR) 的 θ 波段功率。楔前叶 θ 波段功率与 MI 反应的潜伏期呈负相关,因此 rTMS 加快了 50% 参与者的反应。我们假设后部 θ 波段功率反映了感觉处理的注意力调节;因此,高功率可能表示注意力处理并导致更快的反应。
蓝斑 (LC) 是去甲肾上腺素能投射到前脑的主要来源,在前额叶皮层中,它与决策和执行功能有关。睡眠期间,LC 神经元与皮层慢波振荡相位锁定。尽管人们对这种慢节奏感兴趣,但由于它们与行为的时间尺度相对应,因此在清醒状态下很少报告这种慢节奏。因此,我们研究了在执行注意力转移任务的清醒大鼠中,LC 神经元与超慢节奏的同步性。前额叶皮层和海马中的局部场电位 (LFP) 振荡周期约为 0.4 Hz,与关键迷宫位置的任务事件相位锁定。事实上,超慢节奏的连续周期显示出不同的波长,因此这些不是周期性振荡。同时记录的前额叶皮层和海马中的超慢节奏也显示出不同的周期持续时间。这里记录的大多数 LC 神经元(包括光遗传学识别的去甲肾上腺素能神经元)都与这些超慢节律相位锁定,LFP 探针上记录的海马和前额叶单元也是如此。超慢振荡还对伽马振幅进行相位调制,将这些行为时间尺度上的节律与协调神经元同步的节律联系起来。LC 神经元与超慢节律协同释放的去甲肾上腺素将有助于同步或重置这些大脑网络,从而实现行为适应。
工作记忆与前额叶-海马振荡同步相关,但同步大脑节律的内源性模式是否可用于影响未来选择仍不得而知。在这里,我们开发了一个脑机接口,用于检测强和弱的 θ 同步状态,以进行任务和神经操控。强前额叶-海马 θ 相干性状态的特点是前额叶 θ 节律增强,并用于增强记忆引导的选择。在后续实验和分析中,我们表明强前额叶-海马 θ 相干性与任务参与、前额叶神经元对腹中线丘脑 θ 的相位调制以及一组选定神经元的兴奋性增强有关。通过对腹中线丘脑的光遗传学操控,我们产生了前额叶 θ 节律并增强了前额叶-海马振荡同步性。这些实验表明,前额叶-海马振荡同步可用于偏向记忆引导的选择,并为通过连贯性假设进行交流提供支持证据。
神经反馈 (NF) 训练的核心学习机制是联想性的、隐性的,因此在很大程度上不受意识的影响。然而,决定训练结果的许多其他训练方面都可以被意识处理。感觉运动节律 (SMR) 上调训练的结果与参与者报告的策略有关。迄今为止采用的个体策略的分类方法可能受到评估者特殊解释的影响。为了衡量并可能克服这一限制,我们聘请了独立的评估者来分析 SMR 上调训练期间报告的策略。62 名健康的年轻参与者参加了一次 SMR 上调训练。在完成六个训练模块后,参与者需要报告所采用的策略,在训练中,他们要么收到简单的视觉反馈,要么收到游戏化版本的反馈。他们的个人学习成果也被计算出来。结果表明,个人策略以及 NF 学习成果对 SMR 上调训练中的游戏化元素的存在并不特别敏感。独立评估者对策略报告进行分类时观察到高度一致性。一些策略更典型地适用于响应者,而其他策略更常见于无响应者。总之,我们展示了一种更客观、更透明的方式来分析个人心理策略,以更好地揭示 NF 响应者与无响应者之间的差异。
摘要:心理负荷(MW)评估在各类人机交互任务中得到广泛研究。现有的MW分类研究大多使用非侵入式脑电图(EEG)帽采集脑电信号并识别MW水平。但MW任务刺激的大脑激活区域对于每个受试者来说并不相同。使用来自所有电极通道的EEG信号来识别MW可能并不合适。本文首先建立EEG节律能量热图,直观展示四种EEG节律能量随时间、EEG通道和MW水平的变化趋势。从所呈现的热图中可以看出,这种变化趋势因受试者、节律和通道而异。在此基础上,提出了一种双阈值方法来选择MW评估的敏感通道。使用个性化选择通道的EEG信号,分别称为正敏感通道(PSC)和负敏感通道(NSC),并使用支持向量机(SVM)算法进行MW分类。结果表明,个性化敏感通道的选择普遍有助于提高MW分类的性能。
主动睡眠 (AS) 为同步皮质和皮质下结构内及之间的神经活动提供了独特的发展环境。在一周大的大鼠中,肌阵挛性抽搐的感觉反馈(AS 的特征性相位运动活动)会促进海马体和红核(中脑运动结构)中相干的 θ 振荡 (4-8 Hz)。抽搐的感觉反馈还会以纺锤波爆发的形式触发感觉运动皮质中的节律活动,纺锤波爆发是由 θ、α/β(8-20 Hz)和 β2(20-30 Hz)频段中的节律成分组成的短暂振荡事件。在这里,我们想知道这些纺锤波爆发成分中的一个或多个是否从感觉运动皮质传递到海马体。通过同时记录 8 日龄大鼠的胡须桶状皮质和背侧海马,我们发现 AS(而非其他行为状态)会促进皮质-海马相干性,尤其是在 beta2 波段。通过切断眶下神经以阻止胡须抽搐的感觉反馈传递,AS 期间的皮质-海马 beta2 相干性显著降低。这些结果证明了感觉输入(尤其是在 AS 期间)对于协调这两个正在发育的前脑结构之间的节律性活动的必要性。
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛模式,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛范例,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验性疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。