无线传感器节点用于远程监视90°手杆阀的阀位置。从连接的传感器和无线传感器节点的阀位置以及其他测量和状态数据以可调时间间隔记录,并将其传输到洛万网络中的远程站。该数据可用于显示或进一步处理。可以通过无线传感器节点的下行链路通道从Lorawan网络远程访问无线传感器节点,以查询或调整设备参数值。参数化也可以使用移动设备(智能手机或平板电脑)和相应的Wilsen应用程序通过传感器节点中的其他蓝牙接口进行。
基于WinCE平台的通用便携式WSCN节点配置仪设计与研究 姚锋,王义怀* 苏州大学计算机科学与技术学院,苏州 215006,(中国) E-mail: yihuaiw@suda.edu.cn 摘要 无线传感器与控制器网络节点是物联网的重要组成部分,它的设计在物联网产品开发中起着重要作用。实现和配置WSCN节点的信号强度、地址、产品信息在研发、生产、安装和维护过程中是必不可少的。鉴于获取WSCN节点基本信息和配置仪较少,在深入分析WSCN节点的信号强度、地址配置、产品属性等技术的基础上,利用嵌入式软硬件组件化的设计思想,提出了一种基于WinCE平台的可触摸便携式WSCN节点配置仪的方案和实现方法。 WSCN节点的通信采用Freescale公司2014年正式发布的ARM Cortex-M0+内核的KW01-Zigbee芯片作为核心,软件框架基于MQXLite-RTOS,遵循嵌入式软件工程的基本原理,具有良好的可移植性和可重用性。实践表明,该系统通信稳定,数据准确可靠,可控性好,操作方便,是一种新型的WSCN节点配置仪。
量子密钥分发(QKD)基于量子物理原理提供无条件的点对点安全性。通过利用中继节点,QKD的安全性可以扩展到更长的距离。然而,中继节点的引入带来了安全性和通信成功率问题。为了解决这些问题,我们提出了一种增强的多路径方案。我们的提案的主要特点如下:1.通过将中继节点的可靠性作为算法输入之一,使该方案更适合部分可信QKD(PTQKD)网络。2.通过使用多段多路径方法增加了攻击者获取完整密钥信息的难度,并提高了PTQKD的安全性。3.自适应路由算法根据节点贡献率、密钥新鲜度和可靠性生成足够数量的不同路径。我们进行了
上升节点的本地时间:上午10:30。轨道类型:太阳同步。重复期(Nadir):101天。Revisita期间:4天,卷35°。身高:645,80 km重量:1000 kg
摘要:在这些年中,更接近实际应用环境的异质无线传感器网络的3D节点覆盖已成为研究的强烈重点。但是,将传统的二维平面覆盖方法直接应用到三维空间中,其应用复杂性很高,覆盖率低和短期生命周期。大多数方法在考虑覆盖范围时忽略网络生命周期。网络覆盖范围和生命周期决定了异质无线传感器网络中服务质量(QOS)。因此,能量覆盖范围的增强是一项重要和具有挑战性的任务。为了解决上述任务,提出了基于3D-Voronoi分区的能量覆盖范围增强方法VKECE-3D和K-MEANS算法。在保证覆盖范围的同时,将活动节点的数量保持在最低限度。首先,基于随机的节点部署,使用高度破坏性的多项式突变策略将节点部署两次,以提高节点的均匀性。其次,最佳感知半径是使用K-均值算法和3D-Voronoi分区来计算的,以增强网络覆盖质量。最后,提出了一种多跳沟通和轮询工作机制,以降低节点的能耗并延长网络的寿命。它的仿真发现表明,与其他能源效率增强解决方案相比,VKECE-3D可改善网络覆盖范围,并大大延长网络的寿命。
• 多点、半双工:一个发送器节点,其他节点为接收器 • 接收器分接节点的要求:最小输入阻抗 > 10 kΩ • MDI 处的终端电阻,因为终端节点 PHY 可以是接收器节点
▶每个节点的少量节点和Qubits; ▶不完美的纠缠来源; ▶非确定性基本链接生成和纠缠交换; ▶不完美的测量和门操作; ▶无(或有限)纠缠蒸馏/误差校正。
将他们的成就归功于系统的两个主要组成部分:区分和随机化。区分是指使用 SVM 来获取每个节点的分割知识,而随机化是指随机选择图像块,这些图像块用作学习每个节点的分割的特征形式。这种随机化过程可能会导致几个问题。首先,如果我们在 500X500 图像中选取大小为 50X50 的图像块,采样空间可能容纳数千个块,这使得随机选择的块不太可能容纳图像分类感兴趣的对象。此外,随机选择的样本更有可能相互重叠,从而产生冗余。因此,在本项目中,找出选择图像块的新方法。理论上,更具信息性的块选择应该在每个树节点产生更高质量的分割,这反过来应该会提高分类器的整体准确性。
vii。使用共享实时库存指标的直观仪表板在节点的跟踪库存健康,包括平均供应天数,到期或 - 到期日期库存日期股票,超额库存,计划的vs实际库存等。