白血病 (ALL) 5 。长春花碱用于治疗乳腺癌、睾丸癌和神经母细胞瘤 6 。长春地辛是一种从长春花碱中提取的生物碱,已显示出对抗霍奇金淋巴瘤和非霍奇金淋巴瘤、肺癌和乳腺癌的活性 7 。长春瑞滨用于治疗已发展到周围组织或身体其他部位的非小细胞肺癌 (NSCLC) 8 。根据最近的一项研究,长春胺是少数对活细胞有积极作用的生物碱之一。通过增加血流量和区域葡萄糖的吸收,它可以作为脑代谢增强剂,对缺血和缺氧具有神经保护作用,并具有抗氧化和抗凋亡特性。长春胺被认为是治疗镰状细胞病的潜在成分,因为它似乎可以作为活细胞中的氧载体 9 。长春胺是一种单萜吲哚生物碱(图1),主要存在于长春花叶中10。在本研究中,根据国际协调会ICH Q2(R1)指南11的建议,建立了高效薄层色谱法(HPTLC)对长春花叶甲醇提取物中的长春胺进行定量分析。
本研究旨在使用机器学习(ML)模型将四个棉花叶的数据集准确地分类为感染或健康。细菌疫病,卷曲病毒,叶片和健康叶子被用作研究的数据集。mL是检测棉叶疾病的有用工具,可以最大程度地降低疾病率。问题在于,如果没有机器学习技术,检测疾病的疾病是非常困难的,那么就提出了机器学习模型并测试所提出模型的准确性,使用了混淆矩阵概念。研究人员已经通过使用(ML)模型进行了研究工作来诊断疾病,但其研究的缺点是不同(ML)模型给出的结果不准确。该研究的目标是使用传统技术在早期阶段鉴定影响棉花植物的疾病。但是,利用各种图像处理技术和机器学习算法(包括卷积神经网络)被证明有助于诊断疾病。这种技术方法可以简化发现叶片受损的发现,并最大程度地减少农民在发现这些疾病方面的努力。棉花是一种大规模生产的天然纤维,它在整体农艺土地的2.5%上生长。发现棉花叶疾病对于维持农作物的生产力并为农民提供可靠的收入至关重要。混淆矩阵是n x n矩阵,用于评估分类模型的性能,其中n是目标类的数量。矩阵将实际目标值与机器学习模型预测的目标值进行了比较。该技术具有四个参数,可以测试我的研究工作中给出的结果的准确性。
文章历史记录:24-045收到:20024年5月12日修订:21-JUL-20124被接受:2024年7月27日,摘要Clcuv是对全球棉花生产的威胁。棉花叶卷曲疾病是中国,巴基斯坦,印度,菲律宾和泰国等棉花生产国的风险。该病毒负责降低产量,以及骨数量及其体重的减少以及植物尺寸的总体减少。clcud是由单核病毒以及Alpha和Beta卫星引起的。有许多Clcuv菌株,例如棉叶卷曲的Kokhran病毒(Clcukov),棉叶卷曲的Alabad病毒(Clcualv),棉花叶卷卷拉贾斯坦病毒(Clcurav),棉质叶卷曲curl Multan病毒(clcumuv),棉质叶叶curl gezir gezira virus。粉虱,bemisia tabaci负责Clcud的转移。可以进行无数的测量,以最大程度地减少病毒对棉花植物的影响,去除替代寄主,早期播种,使用适当的肥料来健康植物生长,农药消除有害生物的种群(白蝇)。还设计了一些遗传学和生物技术方法来控制和发展对病毒的抗性。此外,可以通过CRISPR-CAS技术通过病原体衍生的抗性或基因编辑来产生转基因品种来产生抗性。将来,我们将能够生产具有更好抵抗疾病和更好产量的新植物品种。在本综述中讨论了Clcuv蔓延所涉及的遗传成分,其向量,传播,受影响区域,不同的菌株和管理策略。关键词:clcuv,遗传成分,α-卫星,β卫星,bemisia tabaci,管理
可以从三个不同的层面描述生物多样性:生态系统、物种和基因。每个组成部分都有其组成和结构。通过技术进步,人类一直在改变其利用生物多样性的方式。从利用生态系统、成为猎人/采集者,到随着农业和畜牧业的出现而驯化多个物种,再到今天通过开发 NBT 来修改基因。自起源以来,人类一直将植物界作为其食物、饮料、药房、仪式和装饰品的来源。随着农业的开始,人类从自然种群中挑选出最适合自己的个体,进行定向杂交,选择认为合适的个体,丢弃其余的个体。这一过程没有任何限制。在《生物多样性公约》及其补充协议《名古屋议定书》生效之前,遗传资源属于人类,没有任何规则来管理其获取和合理使用。世界市场上有许多原产于南美洲的观赏植物品种,这些品种在原产国商业化时必须支付专利使用费。观赏植物市场需求量很大,渴望新奇,南美洲是一个生物多样性极其丰富的地区。它拥有约 600 种观赏植物(12% 为园林植物)。源自该中心的流行观赏植物有花烛、金盏花、花叶万年青、喜林芋、大岩桐、花叶芋、一串红、天芥菜、马鞭草和牵牛花(白花菜、紫花地丁和三色地丁)(De,2017 年)。在《生物多样性公约》和名古屋的框架内,观赏遗传资源可能是该市场新品种的来源,从而对该地区产生社会经济影响,产生不同资质的直接和间接雇员。另一方面,全球气候变化、优质灌溉水资源短缺、
可以从三个不同的层面描述生物多样性:生态系统、物种和基因。每个组成部分都有其组成和结构。通过技术进步,人类一直在改变其利用生物多样性的方式。从利用生态系统、成为猎人/采集者,到随着农业和畜牧业的出现而驯化多个物种,再到今天通过开发 NBT 来修改基因。自起源以来,人类一直将植物界作为其食物、饮料、药房、仪式和装饰品的来源。随着农业的开始,人类从自然种群中挑选出最适合自己的个体,进行定向杂交,选择认为合适的个体,丢弃其余的个体。这一过程没有任何限制。在《生物多样性公约》及其补充协议《名古屋议定书》生效之前,遗传资源属于人类,没有任何规则来管理其获取和合理使用。世界市场上有许多原产于南美洲的观赏植物品种,这些品种在原产国商业化时必须支付专利使用费。观赏植物市场需求量很大,渴望新奇,南美洲是一个生物多样性极其丰富的地区。它拥有约 600 种观赏植物(12% 为园林植物)。源自该中心的流行观赏植物有花烛、金盏花、花叶万年青、喜林芋、大岩桐、花叶芋、一串红、天芥菜、马鞭草和牵牛花(白花菜、紫花地丁和三色地丁)(De,2017 年)。在《生物多样性公约》和名古屋的框架内,观赏遗传资源可能是该市场新品种的来源,从而对该地区产生社会经济影响,产生不同资质的直接和间接雇员。另一方面,全球气候变化、优质灌溉水资源短缺、
抗菌1。引言生物污染带来许多危害,例如船舶结垢,从而降低了速度并增加了燃油消耗[1-4],以及对医疗设备和食品表面的微生物粘附,这很容易对人类安全构成危害[5-7]。在过去的几十年中,已经开发了基于抗生素,有毒材料或超薄处理结构的几种主动和被动抗菌表面[8,9]。受莲花叶的启发,超疏水材料具有出色的水性特性,例如抗腐蚀[10,11],电子设备保护[12],冰保护[13,14],自我清洁[15,16],油水分离[17-19],拖曳还原[20,21]和抗菌[22]。超疏水表面具有抗微生物的巨大潜力
绿色纳米技术的发展引起了研究人员的极大关注,特别是在纳米颗粒的生态合成方面。这项研究介绍了使用山茶菜叶片中提取物的提取物的稳定氧化锌纳米颗粒(ZnO NP)的生物合成。使用紫外线可见光谱(UV-VIS),红外光谱(IR)和X-Ray衍射(XRD)分析来表征合成的纳米颗粒。结果表明,茶花叶提取物有效地降低了锌离子形成氧化锌纳米颗粒。XRD分析证实了ZnO的晶体结构,纳米颗粒的尺寸范围为26-38 nm。这种生物合成方法提供了一种快速,可持续和环保的方法来产生稳定的氧化锌纳米颗粒,从而在各个领域提供了潜在的应用。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
指甲花叶提取物(lawsonia inermis l)用作浸泡在3%HCl腐蚀培养基中的ST37钢中的腐蚀抑制剂。找出抑制剂浓度对钢腐蚀速率的影响,抑制剂浓度的变化为0、3、5、7和9%。腐蚀速率测试是通过质量损失法完成的。在低碳钢上测试了有和不抑制指甲提取物6天的腐蚀速率。结果表明,所使用的指甲花提取物抑制剂的浓度越大,腐蚀速率将降低,并且抑制腐蚀的能力将增加。最大的腐蚀效率以9%的浓度发生,效率为88.84%。X射线衍射(XRD)表征的结果表明,形成的相是纯铁(Fe)。二级电子显微镜(SEM)表征表现出不均匀的簇和较小的尺寸,孔和裂纹的添加抑制性叶提取物也比没有添加抑制性叶片提取物的抑制性叶提取物也要小。通过在能量色散光谱(EDS)表征的结果中显示的腐蚀产物的百分比增强了此结果。
摘要:基于 CRISPR 的基因组编辑技术继续推动生命科学的重大进步。实现基因组编辑在植物和农业中的广泛应用的主要挑战是建立能够使用瞬态方法快速、全面和精确地评估编辑技术的方法。在这里,我们报告了一种使用农杆菌浸润技术的新型快速基因组编辑评估方法,可以对基因组编辑效率进行广谱、简单和精确的评估。我们使用花青素标记来促进基因组编辑细胞的视觉筛选,以用于成年草莓果实以及番茄果实、棉花叶和甜菜叶。使用这种方法,我们展示了快速测量 SpCas9、LbCas12a、A3A-PBE、ABE8e 和 PPE 介导的基因组编辑效率的能力。这种新方法将使研究人员能够快速轻松地评估广泛植物物种的基因组编辑工具,从而进一步加快基因组编辑农作物的开发。