Loading...
机构名称:
¥ 1.0

本研究旨在使用机器学习(ML)模型将四个棉花叶的数据集准确地分类为感染或健康。细菌疫病,卷曲病毒,叶片和健康叶子被用作研究的数据集。mL是检测棉叶疾病的有用工具,可以最大程度地降低疾病率。问题在于,如果没有机器学习技术,检测疾病的疾病是非常困难的,那么就提出了机器学习模型并测试所提出模型的准确性,使用了混淆矩阵概念。研究人员已经通过使用(ML)模型进行了研究工作来诊断疾病,但其研究的缺点是不同(ML)模型给出的结果不准确。该研究的目标是使用传统技术在早期阶段鉴定影响棉花植物的疾病。但是,利用各种图像处理技术和机器学习算法(包括卷积神经网络)被证明有助于诊断疾病。这种技术方法可以简化发现叶片受损的发现,并最大程度地减少农民在发现这些疾病方面的努力。棉花是一种大规模生产的天然纤维,它在整体农艺土地的2.5%上生长。发现棉花叶疾病对于维持农作物的生产力并为农民提供可靠的收入至关重要。混淆矩阵是n x n矩阵,用于评估分类模型的性能,其中n是目标类的数量。矩阵将实际目标值与机器学习模型预测的目标值进行了比较。该技术具有四个参数,可以测试我的研究工作中给出的结果的准确性。

用机器学习模型检测棉叶疾病

用机器学习模型检测棉叶疾病PDF文件第1页

用机器学习模型检测棉叶疾病PDF文件第2页

用机器学习模型检测棉叶疾病PDF文件第3页

用机器学习模型检测棉叶疾病PDF文件第4页

用机器学习模型检测棉叶疾病PDF文件第5页

相关文件推荐