阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
摘要:最近,发酵饮料中褪黑激素的存在与酒精发酵过程中的酵母代谢有关。褪黑激素最初被认为是脊椎动物的松果腺的独特产物,在广泛的无脊椎动物,植物,细菌和真菌中也被鉴定出来。这些发现带来了研究褪黑激素在酵母中的功能以及其合成的机制的挑战。但是,提高发酵饮料中这种有趣分子的选择和生产的必要信息是披露代谢途径中涉及的基因。到目前为止,仅提出了一个基因,该基因参与了酿酒酵母中的褪黑激素的产生,PAA1,一种多胺乙酰基转移酶,这是脊椎动物的Aralkylamine N-乙酰基转移酶(AANAT)的同源物。在这项研究中,我们使用不同的蛋白质表达平台评估了不同可能底物的生物转化,例如5-甲氧氨基胺,色氨酸和5-羟色胺,评估了PAA1的体内功能。此外,我们通过结合全局转录组分析和使用强大的生物信息学工具来预测S. cerevisiae中的Aanat的类似域,从而扩展了对新的N-乙酰基转移酶候选的搜索。候选基因的AANAT活性通过大肠杆菌中的过表达来验证,因为奇怪的是,该系统证明了比其自己宿主的酿酒酵母中的过表达更高的差异。我们的结果证实了PAA1具有乙酰化不同的芳基胺的能力,但AANAT活性似乎不是主要的乙酰化活性。我们还证明,PAA1P并不是这种AANAT活性的唯一酶。我们对新基因的搜索在酿酒酵母中检测到HPA2是一种新的芳基烷基胺N-乙酰基转移酶。这是第一个报告,清楚地证明了该酶参与AANAT活性。
b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
摘要 表型筛选鉴定出一种芳基磺酰胺化合物,对查加斯病的病原体克氏锥虫具有活性。全面的作用模式研究表明,这种化合物主要针对克氏锥虫蛋白酶体,结合在催化糜蛋白酶样活性的 b 4 和 b 5 亚基之间的界面上。蛋白酶体 b 5 亚基的突变与对化合物 1 的抗性有关,而这种突变亚基的过度表达也会降低对化合物 1 的敏感性。进一步通过基因工程和体外筛选的对已知结合在 b 4/b 5 界面的蛋白酶体抑制剂有抗性的克隆对化合物 1 具有交叉抗性。此外,还发现泛素化蛋白质在用化合物 1 处理的上鞭毛体中积聚。最后,热蛋白质组分析确定苹果酸酶是化合物 1 的次要靶点,尽管未发现抑制苹果酸酶可提高药效。这些研究确定了一种能够抑制克氏锥虫蛋白酶体的新型药效团,可用于发现抗恰加斯病药物。
摘要:在2011年,出现了一种新型的超链连接聚合物(HCP),称为编织芳香聚合物(KAPS),其特征是它们具有非凡的化学和热稳定性,其孔隙率特性,尤其是其合成的简单性,其合成的简单性是基于以前的芳族单体的结合而没有任何均可进行的。下一个逻辑步骤是将金属掺入这些网络中,以支持不同的可溶性分子催化剂或金属纳米颗粒(NPS)。因此,在过去的十年中,含金属KAP的数量逐渐增长,我们认为,在报告的第一个KAPS诞辰10周年中,对所有含金属的KAP的审查及其在异质金属催化剂中的应用是强制性的。在本综述中,总结所有包含金属的KAP的最相关特征,分为两个大组,分为金属络合物或金属NP,并根据金属掺入的类型进行分类。最后,根据每个研究的反应中使用的金属进行比较,并评论了这些类型的材料的未来目标。
可控的高区域选择性直接 CH 芳基化是人们非常希望实现的,但这仍然是一个巨大的挑战。在此,我们开发了一种简便的区域选择性直接 CH 芳基化方法,用于高效构建各种基于对称二噻吩并邻苯二甲酰亚胺的 π 共轭分子。所得方法适用于各种基质,从富电子单元到具有大空间端基的缺电子单元。已证实芳基卤化物能够通过直接 CH 芳基化与二噻吩并邻苯二甲酰亚胺 (DTI) 偶联,表现出高区域选择性。已证明,通过改变 DTI 核心上的功能端基可以微调发射颜色以覆盖大部分可见光谱。结果提出了一种简便的高选择性直接 CH 芳基化策略,为高效构建 π 共轭分子以供各种潜在的光电应用开辟了前景。
基团。C – C 键的高反应性还会在各种反应条件下引起立方烷骨架的分解。13 为了开辟立方烷分子科学的新前景,我们开始了立方烷 C – H 转化化学的研究,其中我们选择立方烷的芳基化作为第一个也是最有价值的目标反应。芳基立方烷是立方烷衍生物,最近作为药理学上重要的联芳烃的生物电子等排体而受到关注。14 多芳基化立方烷是前所未有的立方烷衍生物,它们也因其由刚性定向芳基构建的独特、三维和多样化的化学空间而引人注目。在此,我们报道了一种通过定向邻位 -C – H 金属化进行的氨基立方烷钯催化芳基化反应。该方法允许在后期阶段对各种芳基基团进行区域选择性地安装到立方烷骨架上,最终首次合成了多芳基立方烷(图 1)。1988 年,Bashir-Hashemi 报道了立方烷的 C – H 苯基化,其中立方烷基溴化镁通过立方烷-1,4-双(N , N - 二异丙基酰胺)( 1a )的定向邻位锂化生成,然后用苯炔处理得到
获得纳米级光发射器的响应均匀性对于它们在传感和成像剂以及发光二极管 (LED)、激光器等中的光子源中的应用至关重要。在低维纳米发射器(包括胶体和外延量子点 1、2、2D 过渡金属二硫属化物 3 – 6、六方氮化硼 7 和单壁碳纳米管 (SWCNT) 8 – 12 )作为量子计量和量子信息处理 13 的单光子源的新兴角色的背景下,需要对允许的发射能量变化进行更严格的限制,最终目标是实现光子不可区分性。在这些用于量子发射的多样化材料平台中,SWCNT 提供了多种优势,这些优势源于能够通过化学操控控制光发射特性。由于 SWCNT 发射能量对特定纳米管结构(用手性指数 (n,m) 表示,图1)14 具有很强的依赖性,因此其发射能量具有广泛的可调性。对非共价结合包裹剂(如表面活性剂、聚合物和 DNA)表面结构的化学控制为高产率、高纯度分离特定 SWCNT 结构提供了高效途径,从而对发射特性具有显著的选择性 15 。这种表面化学还提供了一种控制周围环境以优化光致发光的途径。最近通过低水平共价功能化引入光致发光缺陷态扩展了 SWCNT 发射行为,为发射特性提供了额外的合成可调性并赋予了量子发射功能,同时也充当了光谱多样性的来源。