房屋飞行,穆斯卡·家族(Musca Housea),是许多病原体的机械载体,对人类和动物的健康构成了重大风险。二十多年前,发现了穆斯卡家族唾液腺肥大病毒(MDSGHV),从而感染了男性和女性苍蝇,并破坏了交配和生殖过程。MDSGHV可以感染各种组织,但其主要复制位点是苍蝇唾液腺。众所周知,节肢动物唾液腺不仅在获取食物,而且在传播病原体中起着重要作用。因此,了解向量唾液腺的组成以及载体与病原体成分之间的相互作用对于制定未来的控制策略至关重要。为此,我们对感染和未感染的房屋蝇的唾液腺进行了全面的RNA测序。我们的分析总共确定了6,410个推定的序列,其中6,309个源自M. tourplea,101个来自MDSGHV,分为25个官能团。此外,受感染和未感染的唾液腺之间的差异表达分析显示,有2,852个显着调节的转录本,突出了MDSGHV感染触发的深刻转录变化。总的来说,这些发现不仅加深了我们对家长唾液腺组成的理解,而且还提供了对病毒媒介相互作用的宝贵见解,这可以作为理解其他医学相关相互作用的模型。
抽象解密人类心脏疾病的遗传结构至关重要,但它们的基本复杂性是一个主要障碍。我们研究了果蝇遗传参考面板(DGRP)测序的近交系中心脏性能的自然变化。全基因组关联研究(GWAS)确定了与心脏性状自然变异相关的遗传网络,这些遗传网络用于获得有关影响分子和细胞过程的见解。非编码变体用于绘制潜在的调节性非编码区域,而该区域又被用来预测转录因子(TFS)结合位点。同源TF,其中许多本身具有与心脏表现变化相关的多态性,也通过特定于心脏特异性的敲低验证。此外,我们表明,与心脏性能变异性相关的自然变异会影响一组与平均特征相关的基因,但通过同一基因中的不同变异。此外,我们表明表型变异性也与基因调节网络的自然变异有关。更重要的是,我们记录了蝇和人类中与心脏表型相关的基因之间的相关性,该基因支持一种保守的遗传结构,该遗传结构调节了从节肢动物到哺乳动物的成年心脏功能。具体而言,在这两种模型中都确定了PAX9和EGR2在心律调节中的作用,这表明果蝇中鉴定出的心脏功能自然变化的特征可以加速人类的发现。
作为一种模型生物,果蝇在帮助我们理解大脑如何控制复杂行为方面具有独特的贡献。它不仅具有复杂的适应性行为,而且还具有独特强大的遗传工具包、日益完整的中枢神经系统密集连接组图谱和快速增长的细胞类型转录组谱。但这也带来了一个挑战:鉴于可用数据量巨大,研究人员如何查找、访问、整合和再利用 (FAIR) 相关数据,以便开发电路的综合解剖和分子图像、为假设生成提供信息并找到用于测试这些假设的实验试剂?虚拟蝇脑 (virtual fly brain.org) 网络应用程序和 API 为这个问题提供了解决方案,它使用 FAIR 原理整合神经元和大脑区域的 3D 图像、连接组学、转录组学和试剂表达数据,涵盖幼虫和成虫的整个中枢神经系统。用户可以通过文本搜索、单击 3D 图像、按图像搜索和按类型(例如多巴胺能神经元)或属性(例如触角叶中的突触输入)查询,按名称、位置或连接性搜索神经元、神经解剖学和试剂。返回的结果包括可在链接的 2D 和 3D 浏览器中浏览或根据开放许可下载的交叉注册 3D 图像,以及从文献中整理的细胞类型和区域的详细描述。这些解决方案具有可扩展性,可以涵盖脊椎动物中类似的图谱和数据集成挑战。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印版的版权持有人于2021年5月31日发布。 https://doi.org/10.1101/2021.05.31.446447 doi:Biorxiv Preprint
每一个思想、感觉和行动都来自脑中数十亿个神经元的电相互作用——这些神经元通过数千亿个突触连接在一起,形成了一个错综复杂的网络。因此,要全面了解大脑的工作原理,我们需要考虑大脑的所有部分及其之间的连接。连接组是脑内结构和功能神经连接的综合图谱,科学家可以通过它探索和比较不同的通路、回路和区域。创建这样一张图谱并非易事:神经元非常微小,它们延伸的分支甚至更小(例如,果蝇脑中的神经元分支通常不到 50 纳米——约为人类头发宽度的千分之一)。为了实现如此高的分辨率,需要用电子显微镜对超薄的脑组织层进行成像,然后以 3D 形式重建神经元及其连接。这不是一件小事,以秀丽隐杆线虫(其大脑仅由 302 个神经元组成)为例,它花了近十年的时间才生成一个全面的连接组( White 等人,1986 年)。这阻止了为更大的大脑创建连接组的尝试,直到显微镜和计算机视觉技术的进步终于满足了需求( Denk 和 Horstmann,2004 年; Heymann 等人,2006 年; Januszewski 等人,2018 年)。如今,人们正在努力征服下一个模式生物——果蝇( Drosophila melanogaster)。在比针头还小的空间里,果蝇的大脑包含超过 100,000 个神经元和大约 1 亿个突触( Simpson,2009 年)。到目前为止,3D
自从罗伯特·施奈德(诺贝尔生理学或医学奖获得者)将其作为遗传研究材料引入生物学界以来,约120年来,它一直作为一种模式生物占据主导地位,并继续作为一个允许自由操纵基因的系统发挥作用。毫不夸张地说,果蝇是世界上唯一一种能够对大脑中的每个神经元进行颜色编码和染色、单独激活和灭活它们,甚至每次都能使用不同的果蝇准确识别和操纵同一个神经元的生物(每个个体拥有的 250,000 个神经元中只有一个是相同的)。这是因为人们已经为这种特殊的苍蝇开发了极其复杂的基因工程技术,而且利用这些技术已经生产出了大量“活蝇资产”(转基因苍蝇株)[1]。作为这一研究对象优势的象征,旨在描述和绘制脑内所有神经连接的果蝇连接组项目,已经远远领先于其他有脑模型生物,并且首批涵盖脑主要部位的数据已于今年公开[2](尽管尚未发表正式论文)。 连接组的完成意味着,抛开操作原理不谈,接线图已经完成,至少在神经网络结构方面,苍蝇大脑不再是一个黑匣子。这一壮举堪比分子生物学中解码整个基因组的壮举,也是了解大脑运作原理历程中的突破性事件。