图 6 Li 3(1+ x ) AlP 2 的结构表征 a) 不同退火温度下 Li 3 AlP 2 产物的实验室 XRD。b) 500 ◦ C 退火的微晶 µ c-Li 3(1+ x ) AlP 2 和 c) 300 ◦ C 退火的纳米晶 nc-Li 3(1+ x ) AlP 2 的同步加速器 XRD。d) µ c-Li 2.925 AlP 2 的 Rietveld 细化。e) nc-Li 2.925 AlP 和 f) µ c-Li 2.925 AlP 2 的对分布函数分析。
万一作者没有发送完整的手稿,并且有缺页,我们会注明。此外,如果必须删除材料,则会在注释中注明删除内容。
当前下一代医学面临的挑战刺激了治疗诊断药物的快速发展。这些对于癌症等疾病来说越来越重要,因为没有两个病人会具有完全相同的生物标志物和致癌突变,而且目前大多数治疗药物的靶标选择性有限、定位性差、副作用不良。治疗诊断药物可以基于与靶向部分(如抗体)结合的小分子;基于工程哺乳动物细胞;以及基于各种类型的纳米粒子(例如氧化铁、金、聚合物或脂质体)。1 虽然所有这些都有局限性,2 但基于脂质体的纳米粒子有几个关键优势。这些包括能够设计多模纳米粒子,这些纳米粒子包含或附着在单个脂质体上,具有多种功能:快速的细胞摄取;广泛的细胞相容性和低毒性;以及较长的循环半衰期和最终的生物降解性。3
流行病学研究发现他汀类药物的使用与帕金森病 (PD) 风险之间存在不一致的关联,这表明接触他汀类药物可能会提供神经保护 1 - 3 或增加 PD 风险。4,5 然而,这种观察性研究受到限制因果推断的偏差的影响,例如混杂和反向因果关系。在长期随机对照试验中稳健地评估他汀类药物或其他降脂药物对 PD 预防的潜力将具有挑战性,因此,有必要使用其他研究设计来检查接触降脂药物是否会减轻或增加 PD 风险。遗传变异可用于预测长期药物暴露对疾病风险的影响。蛋白质编码基因附近的变异可以影响蛋白质的产生或功能,其方式类似于药物对相同蛋白质的治疗调节。因此,这些基因的关联可能是可靠的。
药物污染物已成为全球关注的问题。这些新兴污染物 (EC) 在不同水体中普遍存在,浓度高于生态毒性终点,导致水生生物和水质恶化。本研究广泛评估了在相对低温下合成的多孔石墨烯 (PG) 作为从水溶液中去除六种广泛使用的药物(如阿替洛尔 (ATL)、卡马西平 (CBZ)、环丙沙星 (CIP)、双氯芬酸 (DCF)、吉非贝齐 (GEM) 和布洛芬 (IBP))的潜在候选物的功效。进行了详细的批量测试,以研究吸附时间、初始 EC 浓度、PG 剂量、溶液 pH 值和温度的影响。将 PG 去除 EC 的处理效率与碳质对应物(氧化石墨烯和石墨)去除的效率进行了比较。在不同水体中处理这些 EC 的混合溶液,以测试 PG 作为三级处理选项的效果。通过热力学研究、吸附动力学和等温模型探索吸附机理,并使用 TEM、SEM-EDS、XRD、FT-IR、拉曼光谱和其他分析对 ECs 吸附前后的 PG 吸附剂进行表征。结果表明,对于某些 ECs 来说,动力学很快,吸附容量超过 100 mg-EC/g-PG,在低剂量 PG(100 mg/L)下,所有选定 ECs 的痕量浓度(> 99%)均具有高去除效率。水和废水样品中混合 ECs 的去除效率受到负面干扰,可通过增加 PG 剂量来缓解。吸附过程是异质的,由物理吸附控制。进一步的结果显示了焓驱动吸附过程的放热性质和 PG 的可回收潜力。可以认为 PG 可以
严格控制纳米粒子与生物系统相互作用的选择性对于靶向疗法的开发至关重要。然而,可调参数数量众多,如果没有指导原则,很难确定最佳设计的“最佳点”。在这里,我们将超选择性理论与软物质物理学结合成一个统一的理论框架,并以血脑屏障细胞为目标证明了它的有效性。我们将我们的方法应用于用靶向配体功能化的聚合物囊泡,以确定在粒径、刷长和密度以及系绳长度、亲和力和配体数量方面最具选择性的参数组合。我们表明,将多价相互作用组合成多路复用系统使相互作用成为细胞表型的函数,即表达哪些受体。因此,我们提出设计一种“条形码”靶向方法,可以根据独特的细胞群进行量身定制,从而实现个性化治疗。
在总流量地热系统中,两相涡轮机可以产生输出功率,并为水偏面积恢复淡水。在各种工作条件下,两相涡轮的性能受到地热系统的操作参数的显着影响。本文预先提出的两相涡轮机的性能评估方法,包括一维(1D)方法,二维(2D)方法和三维(3D)方法。1D方法是一种快速迭代方法,可以反映沿叶轮通道的平均流参数。2D方法包括旋转方向上的非均匀效应,3D方法可以使用CFD方法在通道中的完整3D流中得出。在各种旋转速度下,通过实验结果验证了这三个模型。与3D方法相比,1D方法和2D方法可以显着减少计算时间。在各种工作条件下评估了两相反应涡轮的性能。提出了一种基于1D和3D结果的校正方法,以生成性能图并评估地热系统对涡轮机性能的操作参数的影响。提出的方法和分析可广泛用于各种热系统的两相反应涡轮机的设计,选择和操作。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
重复使用:未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利性目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。