• 严重的过敏反应(过敏性休克),包括面部、嘴唇、舌头、喉咙或身体任何其他部位肿胀,并可能导致吞咽或呼吸困难(血管性水肿) • 罕见的皮肤病,嘴唇、眼睛、嘴巴、鼻子和生殖器出现严重的水泡和出血(史蒂文斯-约翰逊综合症) • 麻木或针刺感(感觉异常) • 神经系统疾病,可能导致颈部僵硬、意识模糊、四肢麻木、疼痛和无力、失去平衡、失去反射、部分或全部身体瘫痪(脑脊髓炎和横贯性脊髓炎、臂丛神经炎、格林-巴利综合症)、痉挛(抽搐,包括热性惊厥),
1 适应症和用法 2 剂量和给药 2.1 免疫系列 2.2 给药 3 剂型和强度 4 禁忌症 4.1 超敏反应 4.2 脑病 4.3 进行性神经系统疾病 5 警告和注意事项 5.1 急性过敏反应的治疗 5.2 接种百日咳疫苗后的不良反应 5.3 格林-巴利综合征和臂丛神经炎 5.4 有癫痫病史的婴儿和儿童 5.5 疫苗效力的局限性 5.6 免疫能力改变 5.7 早产儿呼吸暂停 6 不良反应 6.1 临床试验经验 6.2 上市后经验数据 7 药物相互作用 7.1 同时给药与其他疫苗联合使用 7.2 免疫抑制治疗
在新型植物育种技术 (NPBT) 中,CRISPR/Cas9 系统是用于靶基因编辑的有用工具,可快速改良植物的性状。该技术允许同时靶向一个或多个序列,以及通过同源定向重组引入新的遗传变异。然而,CRISPR/Cas9 技术对于某些多倍体木本植物来说仍然是一个挑战,因为必须同时靶向需要突变的所有不同等位基因。在这项工作中,我们描述了改进的方案,使用农杆菌介导的转化将 CRISPR/Cas9 系统应用于高丛蓝莓 (Vaccinium corymbosum L.)。作为概念验证,我们靶向编码八氢番茄红素去饱和酶的基因,该基因的突变会破坏叶绿素的生物合成,从而可以直观评估敲除效率。离体培养的蓝莓 cv. 的叶片外植体。 Berkeley 已用 CRISPR/Cas9 构建体进行转化,该构建体包含两个针对 pds 两个保守基因区域的向导 RNA(gRNA1 和 gRNA2),随后在富含卡那霉素的选择培养基中维持。在选择培养基中培养 4 周后,分离出卡那霉素抗性株系,并通过 Sanger 测序对这些株系进行基因分型,结果显示基因编辑成功。一些突变株系包括白化表型,即使两种 gRNA 的编辑效率都很低,gRNA1 的编辑效率在 2.1% 到 9.6% 之间,gRNA2 的编辑效率在 3.0% 到 23.8% 之间。这里我们展示了一种非常有效的高丛蓝莓商业品种“伯克利”的不定芽再生协议,以及在 Vaccinium corymbosum L. 中使用 CRISPR/Cas9 系统的进一步改进,为通过生物技术方法介导的育种开辟了道路。
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了提示。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的衰减机制。衰减可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子电路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
欢迎阅读《英国陆军评论特别报道:马来亚紧急状态》。本卷主要介绍马来亚紧急状态期间的英国陆军行动,所有材料均取自《英国陆军杂志》(BAJ)和《英国陆军评论》(BAR)的档案。这些文章中的许多文章都是英国陆军士兵在马来亚丛林中与共产主义叛乱分子作战的个人经历。他们的战争是许多在阿富汗和伊拉克服役的人都熟悉和理解的战争。虽然这些文章最早发表于 20 世纪 50 年代初期至中期,但它们仍然与今天的英国陆军有关,特别是如果我们可能打一场不对称混合战争的话。当然,我们将这些旧文章重新打包成一卷的原因是为了向 BAR 读者提供有关陆军参与马来亚紧急状态的“一站式”信息和意见。然而,这些材料不仅仅是来自过去。这些文章涵盖了从《英国陆军杂志》(BAR 的前身)第二卷到 BAR 156 2012 年冬季版。在这一期中,读者将找到作战分析、个人经历和如何在丛林中与神出鬼没的敌人作战的指导。如果我们在 21 世纪的背景下看待这份报告,陆军很可能在城市丛林复杂、艰难的地形中作战,那么马来亚的战斗就变得确实具有现实意义。当然,读者可以从这份特别报告中获取他们想要的内容。对我来说,如果一个人将一篇或全部文章下载到他们的手机、平板电脑或电脑上,并使用这些信息来丰富他们自己对马来亚紧急状态的了解以及如何在丛林或城市环境中作战,那么所有的努力都是值得的。为了使这份特别报告尽可能地易于访问,我们决定它只在线提供,使读者可以随时随地从国防网关上的陆军知识交换网页将报告下载到他们选择的任何设备上。我们希望,这份有关马来亚紧急状态的特别报告能够为您提供一些对未来有益的知识。
质膜 H + -ATPases (PMA) 通过消耗 ATP 将 H + 从细胞质中泵出,从而产生膜电位和质子动力,以便营养物质跨膜转运进出植物细胞。PMA 通过调节根系生长、营养物质吸收和转运以及与丛枝菌根建立共生关系来参与营养物质的获取。在营养胁迫下,PMA 被激活以泵出更多的 H + 并促进有机阴离子排泄,从而提高根际营养物质的有效性。本文我们综述了 PMA 在植物有效获取和利用各种营养物质方面的生理功能和潜在分子机制的最新进展。我们还讨论了 PMA 在提高作物产量和品质方面的应用前景。
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了线索。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的降解机制。降解可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子回路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
*有关特定指示,请参见单个PI。†Cabozantinib是一种酪氨酸激酶抑制剂,靶向MET和血管内皮生长因子受体2等。 MEKI,有丝分裂原激活的蛋白激酶抑制剂; NF1,1型神经纤维瘤病; PI,处方信息; PN,丛状神经纤维瘤。 1。 fda。 trametinib pi。 可用:https://bit.ly/3zfqed4(2025年1月3日访问); 2。 fda。 binimetinib pi。 可用:https://bit.ly/414vmmh(2025年1月3日访问); 3。 fda。 cobimetinib pi。 可用:https://bit.ly/4ft763i(2025年1月3日访问); 4。 fda。 selumetinib pi。 可用:https://bit.ly/48zxsp9(2025年1月3日访问); 5。 EMA。 selumetinib smpc。 可用:https://bit.ly/3zf7vyr(2025年1月3日访问); 6。 onclive。 FDA对NF1相关神经纤维瘤的米尔甲替尼的优先审查。 可用:https://bit.ly/3z1bo8g(2025年1月3日访问); 7。 Armstrong Ae等。 BMC癌。 2023; 23:553。†Cabozantinib是一种酪氨酸激酶抑制剂,靶向MET和血管内皮生长因子受体2等。MEKI,有丝分裂原激活的蛋白激酶抑制剂; NF1,1型神经纤维瘤病; PI,处方信息; PN,丛状神经纤维瘤。 1。 fda。 trametinib pi。 可用:https://bit.ly/3zfqed4(2025年1月3日访问); 2。 fda。 binimetinib pi。 可用:https://bit.ly/414vmmh(2025年1月3日访问); 3。 fda。 cobimetinib pi。 可用:https://bit.ly/4ft763i(2025年1月3日访问); 4。 fda。 selumetinib pi。 可用:https://bit.ly/48zxsp9(2025年1月3日访问); 5。 EMA。 selumetinib smpc。 可用:https://bit.ly/3zf7vyr(2025年1月3日访问); 6。 onclive。 FDA对NF1相关神经纤维瘤的米尔甲替尼的优先审查。 可用:https://bit.ly/3z1bo8g(2025年1月3日访问); 7。 Armstrong Ae等。 BMC癌。 2023; 23:553。MEKI,有丝分裂原激活的蛋白激酶抑制剂; NF1,1型神经纤维瘤病; PI,处方信息; PN,丛状神经纤维瘤。1。fda。trametinib pi。可用:https://bit.ly/3zfqed4(2025年1月3日访问); 2。fda。binimetinib pi。可用:https://bit.ly/414vmmh(2025年1月3日访问); 3。fda。cobimetinib pi。可用:https://bit.ly/4ft763i(2025年1月3日访问); 4。fda。selumetinib pi。可用:https://bit.ly/48zxsp9(2025年1月3日访问); 5。EMA。selumetinib smpc。可用:https://bit.ly/3zf7vyr(2025年1月3日访问); 6。onclive。FDA对NF1相关神经纤维瘤的米尔甲替尼的优先审查。可用:https://bit.ly/3z1bo8g(2025年1月3日访问); 7。Armstrong Ae等。BMC癌。 2023; 23:553。BMC癌。2023; 23:553。
KARASAWA Toshihiko 博士是中央地区农业研究中心(NARO)有机/可持续种植小组的组长。他于 2001 年获得东北大学植物营养学博士学位。他的研究兴趣包括利用植物和土壤微生物的功能促进作物养分吸收。他证明,在 1993 年至 2005 年期间,改善作物轮作可增加本土丛枝菌根真菌的数量,并促进北海道旱地作物对磷的吸收。自 2007 年以来,他一直在筑波工作,致力于开发通过引入绿肥来减少化学肥料使用的技术。他曾于 2002 年获得日本农业科学奖、青年科学家成就奖,并于 2023 年获得日本土壤科学和植物营养学会奖。
摘要 给定流形 V 上的接触结构及其支持的开卷分解,Bourgeois 给出了 V × T 2 上接触结构的显式构造。我们证明所有这样的结构在 5 维上都是普遍紧的,而与原始接触流形本身是紧的还是过度扭曲的无关。在任意维度上,我们提供了 Bourgeois 流形强辛填充的存在性障碍。这给出了一类弱但不强可填充接触 5 流形的新例子,以及所有奇数维中弱但不强可填充接触结构的第一个例子。这些障碍是 S 1 不变接触流形的更一般障碍的特殊例子。我们还得到了任意维度上的分类结果,即 n 环面的单位余切丛具有唯一的辛非球面强填充直到微分同胚。