和核磁共振 (NMR) [7] 已经开发出来。但总的来说,这些检测方法仅限于小型动态组合文库 (DCL) 大小,使用相对大量的蛋白质 (> 10 μM) 并且操作繁琐。报道了一种鉴定蛋白酶抑制剂的方法,该方法涉及醛和亲核试剂的可逆原位反应,监测荧光报告底物水解的抑制情况。[8] 荧光偏振 (FP) 分析已与片段连接结合使用以优化蛋白质结合:通过与亲核片段的原位反应延伸荧光素标记的底物类似物肽与 C 端醛,以增强蛋白质结合亲和力。[9] 在这里,我们报告如何通过在单个孔中原位合成和筛选抑制剂 (ISISS) 来有效发现适合体内使用的人类酶抑制剂。 ISISS 方法将双正交反应与基于 FP 的靶标结合分析相结合,能够对大量片段组合进行时间无关的检测。ISISS 方法操作简单,可在 384 孔板高通量模式下进行(图 1)。我们将基于 FP 的 ISISS 策略应用于发现人类脯氨酰羟化酶 2 (PHD2) 的体内活性抑制剂,PHD2 是治疗慢性肾病 (CKD) 相关贫血的靶标。ISISS 方法采用荧光素标记探针,该探针由异硫氰酸荧光素 (FITC) 和强效 PHD2 抑制剂连接而成(探针结构如图 S2 所示),并通过 FP 分析监测低浓度人类 PHD2 (20 nM) 与竞争性配体的结合(图 S2)。 [10] PHD 催化作用对促红细胞生成素的生物合成有负面调节作用,因此 PHD 抑制剂可促进血红蛋白 (Hb) 的产生和红细胞生成。[11] PHD2 抑制剂有可能彻底改变贫血的治疗,首创的 PHD2 抑制剂罗沙司他现已获准用于临床。[12] 在这里,我们报告了 ISISS 方法如何有效地识别与罗沙司他具有相似效力的 PHD2 抑制剂,包括在体内环境中。根据 PHD2 活性位点的结构特征(图 2A)和双正交酰腙形式,我们能够识别出与罗沙司他具有相似效力的 PHD2 抑制剂。