自动化的导向车辆(AGV)在各个研究领域都起着至关重要的作用。我们的项目旨在增强人类的视觉系统并开发智能机器。AGV广泛用于工业领域,社区服务和危险工作环境中。他们在我们的日常生活中具有许多优势,使他们能够像机器人一样感知和对环境做出反应。考虑到它们的广泛使用,我们开发了一个AGV的原型,该原型使用两个DC电动机和一个freewheel遵循平坦表面上的预定路径。相机连接到PC,以通过MATLAB进行图像采集和处理。GUI应用程序允许用户确定路径,而RF模块可以在PC和MicroController之间进行通信。我们可以根据车辆的位置从PC发送命令,然后按照指示向前,向左,右或停止。这项研究旨在利用医疗保健部门的机器人技术来增强残疾人的流动性。该项目涉及开发一个机器人系统,该机器人系统可以跟踪和导航各种环境,包括工业领域,仓库,医疗设施以及人类无法运作的地区。所提出的系统由三个主要组件组成:机器人组件,PC和GUI应用。机器人组件包括Atmega 16A微控制器,电机驱动器电路(L293D),RF模块(CC2500),IR传感器和USB摄像头。PC将从GUI应用程序接收命令,并通过RF模块向机器人组件发送信号。基于IR的传感器用于障碍物检测。系统的功能框图说明了摄像机如何使用阈值捕获车辆路径的鸟眼视图图像,并使用阈值检测车辆上的红色条并跟踪其运动。GUI应用程序允许用户追踪路径,而微控制器识别PC中的命令并控制机器人的运动(向前,左或右)。电路图显示了两个主要部分:机器人组件和PC。机器人组件采用带电机驱动器电路的Atmega 16A微控制器,用于隔离高功率电动机。RF模块CC2500使用串行协议操作,并连接到微控制器的TX和RX引脚。该系统的算法涉及初始化微控制器,USART和电机;从USB摄像头获取图像;处理图像;跟踪位置;向机器人组件发送信号;并在各自的方向上移动机器人。原型实施证明了在各个领域中使用AGV的可行性,包括工业环境,仓库,医疗设施和人类无法运作的危险区域。参考:1。R.C. Arkin和R.R. Murphy,“制造环境中的自动导航”,IEEE Int。 conf。 机器人和自动化,1997年,pp。 2312-2317。 2。 K. Schilling,M。Mellado-Arteche,J。Garbajosa和R. Mayerhofer,“用于工业生产的灵活自动运输机器人的设计”,《 Proc》。 ieee int。 sammp。 工业电子(ISIE'97),第1卷。R.C.Arkin和R.R.Murphy,“制造环境中的自动导航”,IEEE Int。conf。机器人和自动化,1997年,pp。2312-2317。2。K. Schilling,M。Mellado-Arteche,J。Garbajosa和R. Mayerhofer,“用于工业生产的灵活自动运输机器人的设计”,《 Proc》。ieee int。sammp。工业电子(ISIE'97),第1卷。在1997年,纽约纽约发行了一份出版物,涉及从第791页到796。一份题为“自动导向车辆的同时调度和无冲突路线的动态优化”的研究论文发表在2010年的高级机械设计,系统和制造杂志上。另一项研究是“自动制造系统的过程与以资源为导向的Petri净建模”,由N. Wu和M. Zhou进行,出现在2010年5月的《亚洲控制杂志》中。本文讨论了与AGV词典中与AGV相关的框图。
方法在补充了10%FCS,1%谷歌补充剂(Gibco),100 U/ml青霉素和100μg/ml链霉菌素的IMDM(Gibco)中培养了衍生成近单倍型HAP1细胞的细胞培养。siRNA转染是根据制造商的指南使用Rnaimax(Invitrogen)进行的。在这项研究中使用了以下siRNA:Sinon-targetable(Dharmacon),Sipolg2(地平线,TargetPlus,SmartPool),SIMRPL23(Horizon,Targetplus,TargetPlus,Smartpool)。将所有药物(Aphidicolin,Hu,Olaparib,Rad51i(B02),DNA-PKI(NU74441)和寡霉素A)溶解在DMSO中,并以指示浓度使用。细胞使用具有137CS源的γ提取器(最佳疗法)进行γ辐射。生长测定HAP1细胞以1500个细胞/孔的密度将HAP1细胞铺在96孔板中,并被视为5天。5天后,使用100%甲醇固定细胞,并在室温下使用Crystal Violet染色2H。随后,将晶体紫溶解在10%乙酸中,并使用Biotek Epoch Epoch分光光度计在595 nm处测量强度。使用非线性拟合,sigmoidal,4pl,x是log(浓度),将这些测量值用于棱镜中的IC50计算。在9mm玻璃盖上生长免疫荧光细胞,并在室温下以4%甲醛和0.2%Triton X-100固定10分钟。使用了以下抗体:人类抗克雷斯特(Cortex Biochem,CS1058),兔抗PH3SER10(Campro,#07-081),小鼠抗ERCC6L(PICH)(ABNOVA,ABNOVA,000548421-B01P)。所有初级抗体在4°C的夜间孵育。使用固定缓冲液I(BD生物科学)固定细胞。细胞。二级抗体(分子探针,Invitrogen)和DAPI在室温下孵育2小时。使用延长金(Invitrogen)安装盖玻片。使用具有60倍1.40 Na油目标的Deltavision Deonvolution显微镜(Applied Precision)获取图像。SoftWorx(应用精度),ImageJ,Adobe Photoshop和Illustrator CS6用于处理获得的图像。单倍体插入诱变筛选基因对用APH或HU处理的HAP1细胞的存活至关重要,如先前所述35,使用单倍体插入诱变筛查鉴定。诱变的HAP1细胞是从Brummelkamp实验室获得的。简短地,获得HAP1细胞的诱变如下:在HEK293T细胞中产生了基因陷阱逆转录病毒。每天两次收获逆转录病毒至少三天,并通过离心(使用SW28转子进行2小时,21,000 rpm,4°C,4°C)进行沉淀。在8μg/ml硫酸素硫酸素的存在下,在T175烧瓶中至少连续两天,在8μg/ml硫酸素的存在下,将大约4000万个HAP1细胞通过浓缩基因陷阱病毒的转导而被诱变。在包含10%DMSO和10%FCS的IMDM培养基中冷冻诱变细胞。解冻后,在存在27.5 nm adphidicolin或100μmHu的情况下,将诱变的HAP1细胞转移了10天。传递后,通过胰蛋白酶-EDTA收集细胞,然后进行沉淀。为了最大程度地减少潜在地含有杂合突变的二倍体细胞的混杂,用DAPI染色固定的细胞,以允许使用Astrios Moflo对G1单倍体DNA含量进行分类。将3000万个排序的细胞在56°C下裂解过夜,以使使用DNA迷你试剂盒(QIAGEN)进行基因组DNA分离。插入位点映射基因陷阱插入位点通过LAM-PCR放大,然后进行捕获,ssDNA接头连接和指数放大,并在测序之前使用含有Illumina适配器的引物,如前所述,如前所述35。映射和插入位点的分析以前描述了78。简短地,在对HISEQ 2000或HISEQ 2500(Illumina)进行测序之后,将插入位点映射到人类基因组(H19),允许一个不匹配,并与RefSeq坐标相交,以将插入位点分配给基因。基因区域在相对链上重叠的基因区域没有考虑进行分析,而对于在相同链基因名称上重叠的基因是串联的。对于每种复制和两种药物治疗(APH或HU)基因的必要性都是通过二项式检验确定的。合成致死性。一个基因通过所有Fisher的测试,其p值截止为0.05,效应大小至少为0.12(减法比率wt sense比率 - 复制应力条件感官比率)。