菌丝体结合复合材料是一类新型可持续且价格实惠的生物复合材料,最近被引入包装、时尚和建筑领域,作为传统合成材料的替代品。近年来,人们进行了广泛的调查和研究,以探索菌丝体结合复合材料的生产和加工方法以及寻找其潜在应用。然而,这种新型生物复合材料在建筑行业的应用仅限于小规模原型和展览装置。机械性能低、吸水率高以及缺乏标准生产和测试方法等问题仍然是菌丝体结合复合材料用作非结构或半结构元素时需要解决的主要挑战。这篇简短的评论旨在展示菌丝体结合复合材料在建筑领域的应用潜力,包括隔热和隔音以及替代干式墙和瓷砖。本综述总结了有关建筑领域使用的菌丝体结合复合材料的特性的主要可用信息,同时提出了未来研究和开发这些生物复合材料在建筑行业应用的方向。
真菌和细菌都生活在各种环境中,它们的相互作用在许多过程中都很重要,包括土壤健康,人类和动物生理以及生物技术应用。很难建立这些微生物之间相互作用的特异性。例如,与互动或反性相互作用相比,由于随机混合而导致的琐碎过程之间的分化。在这里,我们研究了菌丝形成生物膜形成液体培养物中浮游细菌生长共培养的单一形态学特征。也就是说,枯草芽孢杆菌的细菌共同援助因子附着于物种Hericium erinaceus的真菌菌丝。开发并利用了细菌中的细菌方法,可通过遏制在细胞外聚合物物质(EPS)和菌丝体整体细胞外基质(ECM)中连接细菌。由于产生EPS,启动结构似乎是由菌丝表面造成的。 T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。 由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。启动结构似乎是由菌丝表面造成的。T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。
菌丝基复合材料具有巨大的潜力,可以作为传统材料的可持续替代品,为全球变暖和气候变化日益严峻的挑战提供创新的解决方案。本综述研究了它们的生产技术、优势和局限性,强调了它们在解决紧迫的环境和经济问题方面的作用。目前的应用涵盖了包括制造业和生物医学领域在内的各个行业,菌丝基复合材料在这些领域表现出减轻环境影响和增强经济可持续性的能力。主要发现强调了它们的环境效益、经济可行性和多种应用,展示了它们彻底改变多个行业的潜力。然而,消费者接受度、内在变异性和标准化指导方针的需求等挑战仍然存在,这凸显了进一步研究和创新的重要性。通过优化材料性能和改进生产工艺,菌丝基复合材料可以为广泛采用可持续材料铺平道路,为更绿色、更环保的未来做出贡献。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(本版本发布于2024年5月6日。; https://doi.org/10.1101/2024.05.05.03.592484 doi:biorxiv Preprint
丝状真菌在向更可持续的食品系统过渡过程中至关重要。虽然对这些生物进行基因改造有望提高真菌食品的营养价值、感官吸引力和可扩展性,但是缺乏用于食用菌株生物工程食品生产的基因工具和实际用例。在这里,我们为米曲霉开发了一个模块化合成生物学工具包,米曲霉是一种用于发酵食品、蛋白质生产和肉类替代品的食用真菌。我们的工具包包括用于基因整合的 CRISPR-Cas9 方法、中性位点和可调启动子。我们使用这些工具来提高食用生物质中营养麦角硫因和风味及颜色分子血红素的细胞内水平。过量生产血红素的菌株呈红色,只需极少的加工即可轻松制成仿肉饼。这些发现凸显了合成生物学在增强真菌食品方面的前景,并为食品生产及其他领域的应用提供有用的遗传工具。
摘要。建筑业的不断增长正在导致大规模的能源消耗和自然资源的耗尽。迫切需要室内设计人员改变其室内建筑和材料使用策略,以促进可重复使用的构造方法,使用可回收材料以及减少能源消耗。尽管已努力减缓建筑对环境的负面影响,但它们并没有阻止地球的生态系统崩溃。考虑到这个问题,负责任的室内设计师正在寻找可以帮助他们开发传统室内设计解决方案的可持续替代方案的新技术。虽然有几项研究讨论了菌丝体的材料,但很少有人认为这些材料在室内设计中的潜在作用。为了解决这一差距,本文的目的是探索基于菌丝体的材料及其室内设计应用。进行了系统的文献综述(SLR),以探索基于菌丝体材料的可持续特征和应用。采用了基于元合成方法的定性研究方法来全面分析和解释所选出版物的相关数据。本文旨在通过研究制造方法和特性来探索基于菌丝体材料的可持续特性,同时确定室内设计中可能的应用。总之,基于菌丝体的材料证明了它们作为通过各种实验原型代替常规材料的可持续替代品的潜力。这些新颖的物质特征的未来发展将使生产提高到能够有助于保护自然资源和发展可持续循环经济的规模。
丝状真菌通过与增长和衰减的植物及其成分微生物组的相互作用,使我们的全球生态系统驱动碳和营养循环。在商业操作中,越来越多地利用了在富有膜的真菌中进化的显着代谢多样性,分泌能力和类似菌丝的菌丝结构。菌丝发酵的工业潜力范围从酶和生物活性化合物的发现和生物产生,食品和材料生产的脱碳,环境修复以及增强的农业生产。尽管对生态学和生物技术的根本影响,但霉菌和蘑菇却没有以与其他工业细胞工厂相媲美的方式与合成生物学显着相交(例如大肠杆菌,酿酒酵母和komagataella phaffifi)。在这篇综述中,我们总结了一套合成生物学和计算工具,用于采矿,进行和优化,将纤维真菌作为生物生产底盘。可以使用跨基因工程,诱变,实验进化和计算建模的方法组合来解决已建立和新兴行业中的应变发育瓶颈。这些包括慢慢的菌丝体生长速率,低产量,替代原料中的非最佳生长以及下游纯化中的困难。在生物制造的范围内,我们通过针对蛋白质加工和分泌途径,菌丝形态发生和转录控制来详细介绍了以前的努力来改善关键瓶颈。将综合生物学实践带入模具和蘑菇的隐藏世界,将扩大有限的寄主生物面板,从而允许对酶,化学药品,治疗方法,食品和未来材料的商业可行和可持续的生物生物生物生物生物生物生物生物生物生物生物生物生物生产。
抗生素耐药性是公共卫生面临的一大挑战,过去的一年里这一问题愈演愈烈 [1, 2]。对于由细菌病原体金黄色葡萄球菌引起的感染尤其如此,这种感染是导致死亡的主要原因,通常与社区获得性耐药菌株 (MRSA) 有关 [3]。这就迫切需要找到新的解决方案,以便有效地诊断和治疗,克服耐药性,避免抗生素库的耗尽。需要金黄色葡萄球菌内的新蛋白质靶点来开发有效的诊断探针,既可用于成像应用,也可用于治疗策略,以阻断细菌的生产性感染,而不会迫使生物体选择耐药突变体。基于氟膦酸酯的活性探针在促进生物膜生长的条件下,鉴定出金黄色葡萄球菌中十种以前未鉴定的活性丝氨酸水解酶,这可以满足这一需求。这些酶被命名为氟膦酸酯结合水解酶 (Fphs),每个酶的字母顺序取决于其预测大小 (52 kD FphA – 22 kD FphJ) [4]。它们都是 α/β 水解酶超家族的成员,其特点是核心由八个 β 链组成,这些 β 链由几个 α 螺旋连接,活性位点为丝氨酸-组氨酸-天冬氨酸或谷氨酸三联体。亲核丝氨酸用于水解底物,小分子可以轻松且特异性地靶向 [5, 6]。一般来说,这些蛋白质在代谢物、肽和脂质的加工中起着重要作用,是控制细胞信号传导和代谢的一种手段;然而,到目前为止,所有 Fphs 的生物学功能仍然未知,只有 FphF 的结构被确定 [6, 7]。它们在生物膜形成条件下的活性状态使它们易于通过化学抑制剂进行修饰,从而开发成探针和药物。这种新化合物
菌丝结合的复合材料是一类新的可持续性和负担得起的生物复合材料,最近已将其引入包装,时尚和建筑中,作为传统合成材料的替代品。近年来,广泛的研究和研究已致力于探索生产和加工方法,并为菌丝体结合的复合材料找到潜在的应用。但是,这种新型生物复合材料在建筑行业中的应用仅限于小规模的原型和展览装置。机械性能低,高吸水和缺乏用于生产和测试菌丝体结合复合材料的标准方法的问题仍然是主要挑战,当用作非结构或半结构元素时,需要解决。此简短的评论旨在以热和声学绝缘的形式展示菌丝体结合的复合材料的潜力,以及用于干墙和瓷砖的替换。本评论总结了有关菌丝体结合的复合材料的特性的主要可用信息,这些信息已在建筑领域使用,同时为这些生物复合材料在建筑行业中的应用中提出了未来的研究和开发方向。
摘要:在建筑史上,从其他学科改编而来的技术为设计和生产创造了新的范式。例如,在第一次工业革命期间,机械和材料工程的发展以及熟铁、钢铁和混凝土的引入导致了建筑的革命性变化。在十九世纪和二十世纪,电气工程和电子技术对建筑和设计产生了类似的开创性影响。看来,考虑到21世纪存在的必要性和问题,例如建筑对化石燃料的依赖导致碳排放、固体和液体废物的大量产生以及不合理的成本,建筑范式需要再次改变。解决这些问题的一种可能方法是回归自然并利用生物材料。本研究研究了基于菌丝体的生物复合材料与建筑领域的整合。菌丝体是蘑菇的营养部分,蘑菇通过它从土壤中吸收养分。经过处理后,菌丝体会形成一种泡沫状的复合材料,这种复合材料重量轻,可生物降解。过去几年,设计师开始在从产品设计和家具到建筑面板和砌块等多种应用中使用基于菌丝体的复合材料。在这项研究中,我们的目标是探索在临时和/或低层建筑中使用基于菌丝体的生物复合材料的新方法。