菌丝蘑菇被人性用作数百年来的有用代谢产物和酶的来源。他们对其他工业微生物的无条件优势是通过相对简单,廉价且易于安排的发酵方案分泌大量(高达120-150 g/l)的蛋白质的能力。菌丝真菌的遗传不同图像决定了它们用作具有独特特性的新基因来源的可能性,还可以使您开发具有工业化蛋白质异源表达的新重组菌株[1,2]。现代生物技术过程中使用的菌丝蘑菇是曲霉[3-5],trichoderma [6-7],青霉[8-9,10],Acremonium [11]等。酶制剂
basidiomycota是真菌的大型且多样的门。它们可以制造生物活性代谢产物,或者启发了抗生素和农业化学物质的合成。萜类化合物是该分类单元中遇到的最丰富的天然产品类别。已经描述了其他天然产物类别,包括聚酮化合物,肽和吲哚生物碱。基本菌真菌对天然产物的发现和研究已被妨碍了杂物因子,其中包括其缓慢的生长和复杂的基因组结构。基因组和代谢组研究工具的最新发展使研究人员可以更轻松地处理基本菌真菌的次级代谢组。廉价的长读全基因组测序可以使高质量的基因组组装,从而改善了可以预测天然产物基因簇的支架。基于CRISPR/CAS9的基于基础菌进行真菌的工程已被描述,并将在将天然产品与其遗传决定因素联系起来中起重要作用。已经开发了基因瘤基因和基因簇异源表达的平台,从而实现了自然产物生物合成研究。分子网络分析和公开可用的天然产品数据库有助于数据消除和自然产品表征。这些技术进步的结合促使人们从基质菌真菌发现自然产品发现的兴趣恢复了兴趣。
真菌和细菌都生活在各种环境中,它们的相互作用在许多过程中都很重要,包括土壤健康,人类和动物生理以及生物技术应用。很难建立这些微生物之间相互作用的特异性。例如,与互动或反性相互作用相比,由于随机混合而导致的琐碎过程之间的分化。在这里,我们研究了菌丝形成生物膜形成液体培养物中浮游细菌生长共培养的单一形态学特征。也就是说,枯草芽孢杆菌的细菌共同援助因子附着于物种Hericium erinaceus的真菌菌丝。开发并利用了细菌中的细菌方法,可通过遏制在细胞外聚合物物质(EPS)和菌丝体整体细胞外基质(ECM)中连接细菌。由于产生EPS,启动结构似乎是由菌丝表面造成的。 T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。 由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。启动结构似乎是由菌丝表面造成的。T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。
菌丝基复合材料具有巨大的潜力,可以作为传统材料的可持续替代品,为全球变暖和气候变化日益严峻的挑战提供创新的解决方案。本综述研究了它们的生产技术、优势和局限性,强调了它们在解决紧迫的环境和经济问题方面的作用。目前的应用涵盖了包括制造业和生物医学领域在内的各个行业,菌丝基复合材料在这些领域表现出减轻环境影响和增强经济可持续性的能力。主要发现强调了它们的环境效益、经济可行性和多种应用,展示了它们彻底改变多个行业的潜力。然而,消费者接受度、内在变异性和标准化指导方针的需求等挑战仍然存在,这凸显了进一步研究和创新的重要性。通过优化材料性能和改进生产工艺,菌丝基复合材料可以为广泛采用可持续材料铺平道路,为更绿色、更环保的未来做出贡献。
研究文章基于菌丝体的MDF Engin Derya Gezer* 1,EsatGümüşkaya2,EzelUçar3,DeryaUstaömer4 1 Karadeniz技术大学,Trabzon森林工业工程师; OrcID:0000-0001-9657-7290 2 Karadeniz技术大学,部Trabzon森林工业工程师; ORCID:0000-0003-1892-7317 3 Karadeniz技术大学,部Trabzon森林工业工程师; OrcID:0000-0001-8588-5765 4 Karadeniz技术大学,部Trabzon森林工业工程师; ORCID:0000-0003-0102-818X收到:28.11.2020接受:04.12.2020摘要菌丝菌丝材料在研究兴趣和商业化方面最近在全球广受欢迎。菌丝合材料是可生物降解的,可再生的材料,环保友好型,并且表现出低密度,良好的隔热性能,包括与声学和热方面有关。但是,菌丝体复合材料的机械性能显然低于替代材料,例如扩展的聚苯乙烯。在这项研究中,用白色腐烂真菌接种硬木和软木纤维,并在25°C的气候腔中孵育15和30天,在25°C的气候室和65%的相对湿度中孵育。基于菌丝体密度纤维板是不使用任何粘合剂或使用6%尿素甲醛粘合剂而产生的。确定了基于菌丝体MDF的MOE,MOR,IB,厚度肿胀和吸水百分比。结果表明,基于菌丝体的MDF的MOE,MOR和IB值较低,并且不符合标准中给出的最小必需强度值。1。简介但是,这些板仍然可以用作绝缘材料。关键字:菌丝合复合材料,MDF,白rot真菌,机械性能,物理特性。
丝状真菌通过与增长和衰减的植物及其成分微生物组的相互作用,使我们的全球生态系统驱动碳和营养循环。在商业操作中,越来越多地利用了在富有膜的真菌中进化的显着代谢多样性,分泌能力和类似菌丝的菌丝结构。菌丝发酵的工业潜力范围从酶和生物活性化合物的发现和生物产生,食品和材料生产的脱碳,环境修复以及增强的农业生产。尽管对生态学和生物技术的根本影响,但霉菌和蘑菇却没有以与其他工业细胞工厂相媲美的方式与合成生物学显着相交(例如大肠杆菌,酿酒酵母和komagataella phaffifi)。在这篇综述中,我们总结了一套合成生物学和计算工具,用于采矿,进行和优化,将纤维真菌作为生物生产底盘。可以使用跨基因工程,诱变,实验进化和计算建模的方法组合来解决已建立和新兴行业中的应变发育瓶颈。这些包括慢慢的菌丝体生长速率,低产量,替代原料中的非最佳生长以及下游纯化中的困难。在生物制造的范围内,我们通过针对蛋白质加工和分泌途径,菌丝形态发生和转录控制来详细介绍了以前的努力来改善关键瓶颈。将综合生物学实践带入模具和蘑菇的隐藏世界,将扩大有限的寄主生物面板,从而允许对酶,化学药品,治疗方法,食品和未来材料的商业可行和可持续的生物生物生物生物生物生物生物生物生物生物生物生物生物生产。
图2:14天后接种后应力时生长的比较。 a)来自p的孢子。 暴露于-80°C后,柠檬酸HEK1在milliq水中。 b)在a中的培养物的放大。 Citrinum HEK1和酵母菌菌株HEK2(红色圆圈)可以观察到。 c)在A中使用的相同初始孢子悬浮液中的培养,但重悬于生理水中而不是Milliq水作为对照。 d)在C中的培养物放大,其中只有p。 可以观察到 Citrinum HEK1(菌丝和孢子)。图2:14天后接种后应力时生长的比较。a)来自p的孢子。柠檬酸HEK1在milliq水中。b)在a中的培养物的放大。Citrinum HEK1和酵母菌菌株HEK2(红色圆圈)可以观察到。c)在A中使用的相同初始孢子悬浮液中的培养,但重悬于生理水中而不是Milliq水作为对照。d)在C中的培养物放大,其中只有p。Citrinum HEK1(菌丝和孢子)。
研究了不同年份生物肥料对 Pleurotus sapidus、P. florida、P. flabellatus 和 P. sajor-caju 菌丝生长和产量的影响。结果发现,与对照相比,没有任何一种生物肥料能够促进 P. sapidus 的菌丝发育和产量。使用不同浓度的不同生物肥料,P. florida 的产量存在显著差异。当在蘑菇床喷洒生物肥料时,Dehra EM 中浓度为 0.4% 的 P. florida 产量显著较高(107.0% BE)。另一方面,在 Dehra EM 中,P. flabellatus 的产量在浓度为 0.6%(71% BE)和 0.2%(59% BE)时显著较高,而 Dehra EM 中 P. florida 的产量在浓度为 0.4%(120.33% BE)时显著较高,而蘑菇床则浸入生物肥料溶液中。不同浓度的生物肥料对 P. sajor-caju 中获得的子实体数量没有显著影响。相反,在 Dehra EM 中,浓度为 0.6%(97.30 BE)、0.4%(91% BE)和 0.2%(69% BE)时 P. sajor-caju 的产量显著较高,而在 Dehra EM 浓度为 0.8% 时产量较低。
fi g u r e 1在疫霉菌中核酸内切酶的表达表达。(a)五个代表性菌株的免疫印迹,用编码编码绿色荧光蛋白(GFP)标记的核酸酶的催化型核酸酶,PSNLS-DCAS9-GFP的质粒转化,用抗GFP探测。nc1和nc2是阴性对照,即分别表达另一种蛋白质和未转化的1306的菌株。蛋白质的预期大小为194 kDa。(b)表达PSNLS-DCAS9-GFP的转化剂的荧光显微照片,显示蛋白质在菌丝内的核的定位。GFP,明亮的场和合并的通道被上下显示,比例尺等于10 µm。 (c)用抗Cas12a探测的质粒转化的菌株的免疫印迹。nc是未转化的祖细胞菌株。从图像中删除了T9和NC之间的一个空车道。蛋白质的预期大小为153 kDa。(d)表达PSNLS-CAS12A-GFP的转化剂的共聚焦图像,显示左侧的菌丝,右侧显示孢子囊。GFP,明亮的场和合并的通道被上下显示,比例尺等于10 µm
摘要 在本研究中,我们评估了水杨酸在减少枣椰树体外培养中真菌污染方面的作用以及水杨酸对茎尖上形成的愈伤组织再生体细胞胚的影响。最常见的真菌是链格孢菌(37%)、镰刀菌(25%)、烟曲霉(18%)和扩展青霉菌(6%)。使用马铃薯葡萄糖琼脂,水杨酸限制菌丝生长,浓度较高时则延缓菌丝生长。与对照(12.3%)相比,将浓度为 1.5 和 2.0 mM 的水杨酸添加到含有 2iP 和 NAA 的 MS 培养基中,可显著提高愈伤组织外植体的胚胎发生率,分别达到 64.9% 和 56.7%。与对照相比,水杨酸还使胚胎的幼苗发育速度提高了约 27%。水杨酸促进了根系和茎部的生长,提高了叶绿素含量。结果表明,在MS培养基中添加1.5mM水杨酸,叶片中IAA和ABA的浓度显著增加,IBA的浓度降低。关键词:初始培养,体细胞胚胎发生,小植株发育,生长调节剂含量