摘要:随着微电子封装与集成化的快速发展,封装结构中微焊点在冲击载荷作用下的失效风险日益受到关注。然而,由于尺寸减小和接头结构的演变,基于铜柱的微凸块接头的失效机理和可靠性性能很少能借鉴现有的板级焊点研究成果。本研究针对芯片上芯片 (CoC) 堆叠互连的微凸块接头的开裂行为,对 CoC 测试样品进行反复跌落试验以揭示裂纹形貌。研究发现,导致微凸块失效的裂纹首先在金属间化合物 (IMC) 层与焊料的界面处萌生,沿界面扩展一定长度,然后偏转到焊料基体中。为进一步探究裂纹扩展机理,采用围线积分法计算了IMC与焊料界面处裂纹尖端的应力强度因子(SIF),定量分析了焊料厚度和裂纹长度的影响,并与裂纹偏转准则相结合。将SIF与焊料-Ni界面和焊料基体的断裂韧性相结合,建立了裂纹偏离原始扩展路径的准则,可用于预测裂纹偏转的临界裂纹长度和偏转角。最后,通过板级跌落试验验证了焊料厚度与主裂纹临界偏转长度和偏转角之间的关系,并简要讨论了焊料基体中晶粒结构对实际失效寿命的影响。
如果前一种效应占主导地位,则发生的现象称为微动磨损,反之亦然,发生微动疲劳。第二种现象可能更危险,因为它是许多关键部件服务故障的原因,有时甚至导致悲惨的事故。一般而言,微动损伤过程可分为三个不同的阶段,如 Hurricks [1] 所述。第一阶段涉及由于机械磨损而去除接触表面上的氧化层。在最初几个微动循环之后,氧化层已完全磨损,下面的部件材料开始粘附,从而形成微焊缝并增加摩擦系数。额外的负载循环导致微焊缝断裂,形成磨损碎片 [2]。更多的微动循环会导致表面附近发生塑性变形和微裂纹发展,进一步磨损并可能在组件材料和磨损颗粒上形成新的氧化物。这些裂纹的形成与接触边缘(即与非滑移区域的边界)的应力集中相对应。据报道,存在非扩展的微动裂纹 [3、4],这表明虽然微动可能严重影响裂纹的萌生和初始扩展,但远离接触区域的最终裂纹扩展受足够高的应力场控制,就像正常疲劳一样。微动问题与不同类型的接触密切相关 [5]:在不完全接触中,接触面积与法向载荷严格相关,而在完全接触中,应力奇异性对应于尖角引入。众所周知,摩擦完全接触中残余剪切牵引力的增加会进一步限制微动循环中的滑动 [ 6 , 7 ]。不会发生相同的效果