可见光光聚聚合正面临着一场革命,随着节能光源的发展,即LED。持续开发光电系统的努力在聚合速率和单体转化方面优于现有的系统,从学术角度来看,寻找尚未在光聚聚合中尚未研究的新染料的搜索仍然非常活跃。最近,萘醌 - 咪唑基和萘醌 - 噻唑衍生物已被鉴定为可在人造光源或太阳下设计的I型和II型光通剂的有趣结构。萘喹酮是生物化化合物,可以大大减少光聚合的碳足迹。萘喹酮也是用于设计光初步器的廉价前体,使其能够设计低成本的吸光结构。通过其广泛的吸收光谱,萘喹酮也是设计阳光光学剂的出色候选者。在这篇综述中,报告了这两个脚手架的不同结构,并提供了光学能力的比较。
吲哚乙酸(IAA)的产生是根际细菌的主要资产,可刺激和增强植物的生长。目前的工作涉及分离和鉴定从石榴酸盐,番石榴和Amla农场收集的根际土壤中产生细菌的吲哚乙酸。在十种吲哚乙酸产生分离株中,选择了两个作为有效的生产者。光谱分析,这表明在37°C下孵育72小时后,分离的细菌在孵育72小时后产生了最大浓度IAA。使用标准IAA曲线测量浓度,并通过AA2获得最大浓度。随后,通过POT分析测试了对植物生长的影响。用AA2分离物进行发芽的豌豆种子的体外处理表现出比对照更好的结果。总而言之,研究表明,IAA产生细菌是促进植物生长的有效接种剂。
众所周知,植物激素的生长素和细胞分裂素是植物生长和发育的关键调节剂,它们是在芽和根,幼叶,种子,种子和水果的顶端分生组织中合成的[1-4]。它们对种子发芽,芽的形成和生长以及植物阶段的植物的不定和侧根表现出刺激的影响[1-4]。植物生物学家的大量关注致力于筛选合成起源的生长素和细胞分裂素的新有效类似物,以改善农业的生长并提高农作物的生产率。近年来,已经创建了新的生长素和细胞分裂素的新合成类似物,例如NAA(1-萘乙酸),2,4-D(2,4-二氯苯氧基酸),3,4-D(3,4-二氯苯甲乙酸),2,4,4,4,5-T
摘要:纺织业是第二大水密集型行业,并产生了大量的废水。即使在较低的浓度下,纺织品废水中存在的染料和重金属也会对环境和人类健康造成不利影响。最近,由于纳米词/添加剂在聚合物基质中的掺入膜性能增强,混合基质膜引起了极大的关注。这项当前的研究研究了ZIF-8/Ca膜对去除染料的疗效和实时纺织业流出物的处理。最初,使用探针超声仪合成ZIF-8纳米颗粒。XRD,FT-IR和SEM分析证实了晶体和六角形ZIF-8纳米颗粒的形成。将ZIF-8纳米颗粒分散到乙酸纤维素基质中,并使用“相浸入法”制备膜。使用FT-IR和SEM分析对膜进行了表征,该分析认可ZIF-8在聚合物基质中的不体化。后来,通过染料去除研究验证了ZIF-8/Ca膜的功效。对晶体紫,酸红色和反应性黑色的染料去除研究表明,膜的去除效率约为85%,并且研究进一步扩展到实时纺织流出的处理。关于纺织流出物的研究盛行,ZIF-8/CA膜也熟练地消除了化学氧需求(COD)〜70%,总有机碳(TOC)〜80%,以及诸如铅,铬和含水量的重金属,以及从纺织废水中获得的含量,并且证明是对纺织品的效果。
摘要。一种粘合剂,以各种名称(例如胶水,水泥,粘液或糊状)而闻名,是一种材料,用于将两个不同物品的一个或两个表面应用于一个或两个表面,以将它们团结起来并承受将它们拉开的任何尝试。粘合剂可以自然发生或人为地生产。在这种特定情况下,讨论集中于使用丙烯酸和乙酸聚乙烯酯(PVA)作为所考虑的粘合剂的基本材料。在制定粘合剂的过程中,测量了大约2升水,然后倒入用作混合容器的塑料桶中。随后,将0.7千克碳酸钙引入水桶中,并搅拌以进行彻底混合。之后,将每个丙烯酸和乙酸聚乙烯酯(PVA)添加到桶中的混合物中,并有效地搅拌直至实现均匀且良好的混合物。然后将0.1 kg的硝基醇和0.07 kg的bamacol粉末掺入混合物中,以连续搅拌,以确保将其掺入混合物中。此外,将0.05千克的福尔马林作为防腐剂引入,并搅拌大约十分钟以最终确定产品。然后,通过测试其在各种材料组合上的键合特性来评估粘合剂的性能,包括木材到木材,纸箱到纸 - 卡顿,纸纸到纸,木材到金属和纸与木材的应用。结果表明,使用时,白色粘合剂可作为多功能,应用于多功能产品。测试了各种特性,例如干燥时间,粘结强度和pH水平,以确定粘合剂的最佳品质。此外,还彻底检查了配制粘合剂的保质期。最终,粘合剂证明了其在粘结纸纸,纸上和其他包装材料中的有效性,展示了其在各种应用中的多功能性和实用性。
Scholl 反应 1 是一种合成多环芳烃的有效方法,可在一步中形成多个碳 - 碳键。通过自由基阳离子机理 2 进行的 Scholl 反应对底物内电子密度的分布非常敏感,氧化芳族偶联发生在电子密度最高的位置。3 基于这一概念,我们最近证明,通过在底物中引入萘部分可以促进 Scholl 反应,从而产生高度弯曲的多环芳烃。4,5 在此,我们通过展示成功合成前所未有的芳香鞍形物(图 1 中的 1)来扩展这一策略的范围,这是通过在 Scholl 反应的底物中加入萘基来实现的。芳香鞍形物,也称为负弯曲多环芳烃,最近受到越来越多的关注 6,7,原因有两个。首先,它们代表碳黑石中的片段 8
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许在任何媒介或限制中使用,共享,适应,分发和复制,只要您适当地归功于原始作者(S)和来源,并提供了与创意共享许可证的链接,并表明是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意协议许可中,除非在材料的信用额度中另有说明。如果文章的创意综合许可中未包含材料,并且您的预期用途不得由法定法规允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
毒理学概况是根据 1980 年《综合环境反应、赔偿和责任法》(经修订)(CERCLA 或超级基金)制定的。CERCLA 第 104(i)(1) 条指示 ATSDR 管理员“…实施和执行法规中与健康相关的权力”。这包括为 CERCLA 国家优先事项清单 (NPL) 上设施中最常见的危险物质准备毒理学概况,这些物质对人类健康构成最大潜在威胁,由 ATSDR 和 EPA 确定。CERCLA 经修订的第 104(i)(3) 条指示 ATSDR 管理员为清单上的每种物质准备毒理学概况。此外,ATSDR 有权为 NPL 地点未发现的物质准备毒理学概况,以便根据 CERCLA 第 104(i)(1)(B) 条“建立和维护有关有毒物质对健康影响的文献、研究和调查清单”,响应第 104(i)(4) 条下的咨询请求,并在必要时支持 ATSDR 针对特定地点采取的响应行动。
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 由 此预印本的版权持有者(此版本于 2020 年 4 月 20 日发布。 ; https://doi.org/10.1101/2020.04.20.047845 doi: bioRxiv preprint
摘要简介:早产视网膜病(ROP)是儿童失明的主要原因,主要影响新生儿和低胎龄。这是一种需要筛查和及时检测来指导治疗的疾病。当前的疗法是侵入性,昂贵且部分有效的,最近口服普萘洛尔是有效的,可以预防或治疗阈值视网膜病前病。目的:报告接受口服普萘洛尔的早产性视网膜病的极端过早诊断的临床病例,并随着病理的大量改善而发展。方法:数据将通过电子病历和纸张获得。该研究将在完成研究伦理委员会批准后,由患者的法定监护人填写免费和澄清同意书(TCL)后开始。这是对临床病例报告格式的观察类型和描述性类型的研究。结果/结论:它的科学相关性是对早产中这种常见病理的新的,侵入性较低的治疗资源的重要性和需求。关键字:早产视网膜病变;早产新生儿;普萘洛尔;健康教育;教学。