- 可以使用MLCS实现。- 每个光束仅处理目标的一部分 - 可以通过标准的“正向”或反迭代方法来计划 - 给出更高的自由度,并可能更宽松的剂量
图解扩展是处理相关电子系统的中心工具。在热平衡下,它们最自然地定义了Matsubara形式主义。但是,从Matsubara计算中提取任何动态响应函数最终需要从虚构到实频域到实频域的错误分析延续。最近提出了[物理学。修订版b 99,035120(2019)],可以使用符号代数算法分析进行任何相互作用膨胀图的内部Matsubara总结。总结的结果是复杂频率而不是Matsubara频率的分析函数。在这里,我们应用了此原理并开发了一种示意的蒙特卡洛技术,该技术直接在实际频率轴上产生。我们介绍了在非平凡参数方面的掺杂32x32环状方晶格哈伯德模型的自我能量σ(ω)的结果,其中pseudogap的特征似乎靠近antinode。我们讨论了在实频轴上的扰动序列的行为,尤其表明,在使用截短的扰动系列上使用最大熵方法时,必须非常小心。在分析延续很困难的情况下,我们的方法对将来的应用具有巨大的希望,而中阶扰动理论可能会融合结果。
有人提出,大脑使用概率生成模型来最佳地解释感官信息。这一假设已在不同框架中形式化,重点是解释不同的现象。一方面,经典预测编码理论提出了如何通过采用局部突触可塑性的神经元网络来学习概率模型。另一方面,神经采样理论已经证明了随机动力学如何使神经回路能够表示环境潜在状态的后验分布。这些框架通过变分过滤结合在一起,将神经采样引入预测编码。在这里,我们考虑一种用于静态输入的变分过滤变体,我们将其称为蒙特卡罗预测编码 (MCPC)。我们证明,预测编码与神经采样的结合会产生一个使用局部计算和可塑性学习精确生成模型的神经网络。MCPC 的神经动力学在存在感官输入的情况下推断潜在状态的后验分布,并可以在没有感官输入的情况下生成可能的输入。此外,MCPC 还捕捉了感知任务期间神经活动变化的实验观察结果。通过结合预测编码和神经采样,MCPC 可以解释之前由这些单独框架解释的两组神经数据。
本数据文章与研究文章有关,“ M.J. McNulty,K。Kelada,D。Paul,S。Nandi和K.A.麦当劳,将不确定性定量引入了制造田种植的植物性产品的技术经济模型,食品生物蛋白酶。过程。128(2021)153–165。”呈现的原始数据和既定数据与非确定性下高价值重组蛋白的超大规模尺度生长植物生产的生成,分析和优化有关。 使用Crystal Ball插件中的SuperPro De-signer中使用确定性的技术经济过程模型模拟,该数据是使用SuperPro De-signer中的确定性技术 - 经济过程模型模拟的。 本文的目的是使技术经济和提出的不确定性数据可用于其他研究目的。128(2021)153–165。”呈现的原始数据和既定数据与非确定性下高价值重组蛋白的超大规模尺度生长植物生产的生成,分析和优化有关。使用Crystal Ball插件中的SuperPro De-signer中使用确定性的技术经济过程模型模拟,该数据是使用SuperPro De-signer中的确定性技术 - 经济过程模型模拟的。本文的目的是使技术经济和提出的不确定性数据可用于其他研究目的。
我们在蒙特卡洛事件生成的生成对抗学习的背景下提出并评估了一种替代性量子发生器结构,用于模拟大型强子对撞机(LHC)的分类物理过程。我们通过在已知的非衍生分布生成的人工数据上实现量子网络来验证这种方法。然后将网络应用于特定LHC散射过程的蒙特卡洛生成的数据集。新的量子发生器体系结构可导致最先进的实现的一般化,即使使用浅深度网络,也可以实现较小的kullback-leibler dibergence。此外,即使接受了小型培训样本集训练,量子发生器也成功地学习了基础分布功能。这对于数据八月应用特别有趣。我们将这种新颖的方法部署在两个不同的量子硬件体系结构,被困的离子和超构造技术上,以测试其硬件独立的生存能力。
本文是一系列研究,该系列研究了从其新生的原始磁盘(PPD)中积聚的行星的观察性外观。我们评估了在辐射流体动力(RHD)类似物中确定的气温分布与通过蒙特卡洛(MC)辐射转运(RT)方案重新计算的差异。我们的MCRT模拟是针对全局PPD模型进行的,每个模型由嵌入在轴对称全局磁盘模拟中的局部3D高分辨率RHD模型组成。我们报告了两种方法之间的一致性水平,并指出了几个警告,这些警告阻止了温度分布与我们各自的选择方法之间的完美匹配。总体而言,一致性水平很高,高分辨率区域的RHD和MCRT温度之间的典型差异仅为10%。最大的差异接近磁盘光球,光学密集区域和薄区域以及PPD的遥远区域之间的过渡层,偶尔超过40%的值。我们确定了这些差异的几个原因,这些原因主要与用于流体动力模拟(角度和频率平衡以及散射)和MCRT方法(忽略内部能量对流和压缩和扩展工作的典型辐射转移求解器的一般特征有关)。这提供了一种清晰的途径,以减少未来工作中系统的温度不准确。基于MCRT模拟,我们最终确定了整个PPD的通量估计值的预期误差和从其环境磁盘中积聚气体的行星的预期误差,而与山相中的气体堆积量和使用模型分辨率无关。
Almheiri,Dong和Harlow的开创性论文[1]证明,量子误差纠正(QEC)自然出现在ADS / CFT对应关系中。这个想法很简单:可以使用边界的不同部分重建相同的散装区域。因此,如果边界的某些部分丢失或受到量子噪声的影响,则可以完美保存散装中的信息,并且可以使用边界的不同部分恢复。这导致了各种有趣的结果,例如纠缠楔重建[2]和Ryu – Takayanagi公式的推导[3]。使用批量中的完美和随机张量网络构建了几种玩具模型[4],[4],[4],[5]。在这些示例中,边界具有一个空间维度,并且大量是二维的庞贝雷磁盘。这些模型的一个缺点是它们没有哈密顿人,因此它们不是动态的。这些结构类似于量子多体系统的近似波函数构建
路径积分量子蒙特卡洛(PIMC)是一种通过使用马尔可夫链蒙特卡洛(Monte Carlo)从经典的吉布斯分布中抽样的量子量子自旋系统的热平衡性能的方法。PIMC方法已被广泛用于研究材料物理和模拟量子退火,但是这些成功的应用很少伴随着正式的证据,即PIMC依据的马尔可夫链迅速汇聚到所需的平衡分布。在这项工作中,我们分析了1D stoquastic hamiltonians的PIMC的混合时间,包括远程代数衰减相互作用以及无序的XY旋转链,以及与最近的静脉相互作用。通过将收敛时间与平衡分布联系起来,我们严格地证明使用PIMC在近似温度下对这些模型的可观察到的分区函数和期望为近相数,这些模型与Qubits的数量最大程度地对数扩展。混合时间分析基于应用于单位大都会马尔可夫链的规范路径方法,用于与与量子汉密尔顿量子相互作用相关的2D经典自旋模量的吉布斯分布。由于系统具有强烈的非偶然耦合,随着系统大小而生长,因此它不会属于已知2D经典自旋模型迅速混合的已知情况。
摘要 - 在这项工作中,我们提出了一位用于创建开环轨迹的计划者,该轨迹可以使用非恐怖分子的方法来解决不确定性下的重排计划问题。我们首先将蒙特卡洛树搜索算法扩展到了不可观察的域。然后,我们提出了两项默认政策,使我们能够快速确定实现目标的潜力,同时考虑到重新安排计划至关重要的联系。第一个策略使用从一组用户演示中生成的学习模型。可以快速查询此模型的一系列动作,这些操作试图创建与对象并实现目标。第二策略在全州空间的子空间中使用了启发式指导计划者。使用这些目标知情政策,我们能够快速找到该问题的初始解决方案,然后在时间允许的情况下不断地重新填充解决方案。我们在桌子上的7个自由度操纵器移动对象上演示了我们的算法。
变分量子算法是近期和未来容错量子设备模拟的前沿。虽然大多数变分量子算法只涉及连续优化变量,但有时可以通过添加某些离散优化变量来显著增强变分假设的表示能力,广义量子近似优化算法 (QAOA) 就是一个例子。然而,广义 QAOA 中的混合离散-连续优化问题对优化提出了挑战。我们提出了一种称为 MCTS-QAOA 的新算法,它将蒙特卡洛树搜索方法与改进的自然策略梯度求解器相结合,分别优化量子电路中的离散变量和连续变量。我们发现 MCTS-QAOA 具有出色的抗噪特性,并且在广义 QAOA 的具有挑战性的实例中优于先前的算法。