在低电子能量的扫描电子显微镜(SEM)中,损伤诱导的电压改变(DIVA)对比度机制已作为一种快速且方便的方法,可以直接可视化硝酸盐(GAN)中能量离子辐照引起的电阻率的增加。在覆盖有金属面膜的蓝宝石上外上植物生长的gan层,并在600 keV能量下受到He 2 +辐射的约束。在不同的电子束电流和扫描速度下,在SEM上成像样品横截面处的二维损伤曲线。通过电子束照射沉积的累积电荷的增加观察到了图像对比的逐渐发展,以最终达到与GAN离子辐射部分的局部电阻率相关的对比度的饱和水平。提出的方法允许人们直接可视化离子辐照区域,即使是由于离子损伤导致的最低电阻率变化,即用离子辐照后,甘恩的所有级别的绝缘层堆积。考虑到不可能将湿化学的蚀刻技术应用于GAN,它使提出的技术成为基于GAN-基于GAN-基于电子设备的高度抗性和绝缘区域的可视化方法。提出的作品的主要目的是更深入地了解GAN中的Diva对比,特别强调讨论栅格速度和电子束电流的作用,即电荷堆积的细节样品表面。
二维(2D)过渡金属二核苷(TMDC)表现出令人兴奋的半导体特性和用于晶体管,光电设备,量子信息科学和能量任务的多功能材料化学。金属有机化学蒸气沉积(MOCVD)已成为一种有前途的技术,它可以增长2D TMDC,这要归功于其在此过程中执行高温外观生长并保持稳定的前体流量的能力。首先,我将讨论我们在蓝宝石和石墨烯基板上生长2D TMDC的MOCVD过程,以及其在功能化表面或Damascene结构上低温沉积的能力。[1,2]第二,我将讨论我们在TMDC增长期间使用RE [3]和V的TMDC替代掺杂的最新进展。一些掺杂剂可以调节载体浓度,引入磁性,甚至治愈TMDC中的缺陷。第三层TMDC半导体可能会引起近室温度设备应用,因为它们的热电离能量减少了,与单层相比。i将介绍我们的外延1到3层MOS 2,由MOCVD生长的逐层和结果。,最后,使用TMD作为构建块,我们可以用固有的偶极矩创建破坏对称性的2D材料。最新结果[4,5],包括将2D WS 2和MOS 2转化为2d Janus WSSE和MOSSE以及由Janus TMD和标准TMDS组成的杂波的电荷转移研究。
摘要:额叶聚合(FP)是一种比高压釜低的能量成本的热固性塑料的方法。已经讨论了同时产生多个聚合阵线传播的潜力,这是一种令人兴奋的可能性。但是,尚未证明在同时启动两个以上的FP。多点启动可以使大规模材料制造和独特的图案生成。在这里,作者提出了激光图案的光热加热,作为在2-D样品中多个位置同时启动FP的方法。碳黑色颗粒被混合到液体树脂(双环戊二烯)中,以增强从样品上的Ti:蓝宝石激光(800 nm)中的光吸收。激光是通过在启动点之间快速转向来分配的,从而产生了多达七个同时启动点的聚合。此过程导致形成由正面碰撞导致的对称和不对称接缝图案。作者还提供并验证一个理论框架,以预测前碰撞形成的接缝模式。此框架允许通过反向解决方案设计新模式,以确定形成所需模式所需的启动点。这种方法的未来应用可以使新型复合材料样式材料的快速,节能生产。关键字:额叶聚合,图案材料,光热启动,激光启动,双环齿丹■简介
摘要:二维(2D)半导体过渡 - 金属二甲藻元化(TMDC)是激动人心的兴奋性物理和下一代电子设备的令人兴奋的平台,从而提出了强烈的需求,以了解其增长,兴奋剂和异质结构。尽管在固体源(SS-)和金属 - 有机化学蒸气沉积(MOCVD)中取得了显着进展,但仍需要进一步优化,以增强高度结晶的2D TMDC,并具有受控的掺杂。在这里,我们报告了一种混合MOCVD生长法,该方法结合了液相金属前体沉积和蒸气相机 - chalcogen的递送,以利用MOCVD和SS-CVD的优势。使用我们的混合方法,我们证明了WS 2的生长,具有从分离的单晶结构域到各种底物的连续单层膜的可调形态,包括蓝宝石,SIO 2和AU。这些WS 2膜表现出狭窄的中性激子光致发光线的宽度,低至27-28 MeV和室温迁移率最高34-36 cm 2 v-1 s-1。通过对液体前体组成的简单修改,我们证明了V掺杂WS 2,Mo X W 1-X S 2合金和面内WS 2 - MOS 2异质结构的生长。这项工作提出了一种有效的方法,可以在实验室规模上满足各种TMDC合成需求。关键字:金属 - 有机化学蒸气沉积,2D半导体生长,过渡金属二甲构代化,掺杂,合金,WS 2,MOS 2,MOS 2
我们研究了由金属有机化学蒸气沉积(MOCVD)在蓝宝石上生长的Znga 2 o 4纤维的电和光学性能,并在融合二氧化硅上通过脉冲激光沉积(PLD)生长的半绝制纤维。在700℃下形成的气体退火后,MOCVDFILM高度传导,室温载体浓度为2 10 20 cm 3,迁移率为20 cm 2 /v s,直接带茎gap吸收在3.65 eV和4.60 eV和4.60 eV中。在相同的退火条件下,PLD纤维是半绝制的,在5.25 eV时具有直接的带隙吸收。声子结构对于电气传导以及超导性和其他量子现象很重要,由于晶胞中的原子数量大量(以及声子分支)非常复杂。然而,我们表明,可以通过基于量子的磁磁性贡献的声子在温度跨度T¼10-200k的情况下直接测量。约10至90 MeV,与密度功能理论计算得出的Znga 2 O 4状态密度(在0 K)的能量范围一致。然后可以通过l tot1¼lii1ÞlpH 1对总测量的迁移率进行建模,其中l ii是由于电离脉冲散射引起的迁移率。具有高带隙,控制电导率,高击穿电压和散装增长能力,Znga 2 O 4为高功率电子和紫外检测器提供了机会。
摘要 — 开发了一种电子封装技术,该技术可在二氧化碳 (CO 2 ) 和氮气环境中承受模拟的金星表面温度 465°C 和 96 bar 压力,且不含腐蚀性微量气体。对氧化铝陶瓷基板和氧化铝上的金导体的电气和机械性能进行了评估。最有前途的芯片粘接材料是厚膜金和氧化铝基陶瓷浆料。使用这些芯片粘接材料将氧化铝、蓝宝石、硅和碳化硅芯片粘接到氧化铝基板上,并在 465°C 的 CO 2 环境中暴露于 96 bar 压力下 244 小时。陶瓷芯片粘接材料在测试前后表现出一致的剪切强度。还评估了氧化铝陶瓷封装材料的热机械稳定性。封装基板上的器件采用陶瓷封装,在 Venusian 模拟器测试后,裂纹和空隙没有明显增加。对金键合线进行了线拉力强度测试,以评估 Venusian 模拟器暴露之前和之后的机械耐久性。暴露前后的平均金键合线拉力强度分别为 5.78 gF 和 4 gF(1 mil 金键合线),符合最低 MIL-STD-885 2011.9 标准。Venus 模拟器测试后,整体键合线菊花链电阻变化为 0.47%,表明键合线完整性良好。制作了钛封装来容纳陶瓷封装基板,并制作了双层金属化馈通来为封装提供电气接口。
量子信息技术中必不可少的量子器件是在硅或蓝宝石晶片上制造的。最近的研究发现,晶片中的声学模式可以在量子态操控中发挥重要作用,包括声学和量子比特态之间的交换操作,从而导致冷却 1,2。声学模式由晶片上制备的压电换能器产生。这通常是材料声学研究最常用的方法,其中电极与换能器粘合,而换能器与感兴趣的样品直接接触。换能器对振荡电压的压电响应将电磁信号转换为机械振荡。在某些情况下,让电极或换能器与样品物理接触是不可取的或不切实际的。在这里,我们展示了一种用于产生和测量材料中声学共振的非接触式技术。Dobbs 3 描述了使用螺线管和静磁场在金属中产生声学共振。电磁信号与机械振动之间的耦合是通过磁场产生的洛伦兹力实现的,从而无需使用压电材料。洛伦兹力发生在金属表面或射频 (RF) 穿透深度内,从而在体内产生声学模式。通过这种方法,我们研究了硅晶片中的高谐波声学模式,精确测量了纵向和横向声速并计算了相应的弹性常数。我们的样品是一块 [001] 单晶硅晶片,一侧覆盖有 Nb 薄膜。样品从最初直径为 15 厘米的商用晶片上切割下来,尺寸为 4mmx 4mmx 330 µ m(浮区,电阻率 > 10,000 Ωcm)。本文详细描述的结果针对的是厚度为 155 nm 的 Nb 薄膜,由 Rigetti Computing 采用高功率脉冲磁控溅射 (HiPIMS) 制备。高达 14 T 的高磁场敏感度测量
飞秒激光器由于其独特的特征(例如超短脉冲宽度和极高的峰值强度)开辟了新的材料加工途径,这为将各种材料加工到其他常规激光器提供了卓越的性能[1,2]。具体而言,飞秒激光处理的最重要特征之一是它能够通过抑制受热影响区域(HAZS)的形成,以高质量地进行超高精确的微型和纳米化。飞秒激光器广泛用于商业应用,包括电子,汽车和医疗组件的微加工和修剪;玻璃和蓝宝石基材的涂抹和划分智能手机和显示器;通过纳米结构的Si太阳能电池,硒化铜硅化铜,硒化铜和无机太阳能电池制造抗反射表面;微光发射二极管显示的缺陷修复和边缘切割;和医疗支架的制造。迫切要求提高吞吐量,以进一步加速其商业化和工业应用。可以想象,可以通过增加激光脉冲的强度和/或重复率很容易地增加吞吐量。然而,较高的强度遭受了血浆屏蔽的影响,降低了消融效率,并且由于沉积过量的能量而经常诱导热损害[3]。重复率高于数百kHz会诱导热量积累会产生较大的HAZ,这不适用于高精度或高质量的微分化[4]。他们称此过程消融冷却。这些结果具有ilday的小组最近证明,具有GHz重复率的飞秒激光脉冲的突发可以提高消融效率,如图1 [5]所示。他们声称,在先前的脉冲沉积的残留热量之前,将目标材料从加工区域扩散,以提高消融效率(一阶较高)。他们进一步声称,消融材料的物理去除将消融质量中包含的热能带走,导致高质量消融,没有热效应。
完整的实验装置如图 S1 所示。超导量子比特遵循文献 [1] 中描述的“3D transmon”设计。单个铝制约瑟夫森结与蓝宝石衬底上的两个 0.4 x 1 毫米天线相连,嵌入空的铝块腔中,固定在稀释制冷机的 20 mK 基温下。transmon 芯片采用电子束光刻、双角蒸发和氧化工艺制成隧道结。光谱测量得出量子比特频率 ν q = 5 . 19 GHz,与下一个跃迁相差非谐性 α/ 2 π = 160 MHz。测得的弛豫时间为 T 1 = 16 µ s,拉姆齐时间为 T 2 = 10 . 5 µ s。读出和驱动脉冲由微波发生器产生的两个连续微波音调的单边带调制产生,微波发生器分别设置在 ν c 0 + 62 . 5 MHz 和 ν q + 62 . 5 MHz,其中 ν c 0 = 7 . 74 GHz 是高功率下的腔体频率(图 S3.a)。调制是通过将这些连续波与 62.5 MHz 的脉冲正弦信号混合来完成的,后者由 4 通道泰克任意波形发生器的两个不同通道合成。所有源均由原子钟同步。两个脉冲合并并通过输入线发送到腔体的弱耦合输入端口,输入线在稀释制冷机的各个阶段用低温衰减器进行滤波和衰减,确保进入设备的热激发可以忽略不计。在静止阶段 (850 mK) 使用商用 (来自 K&L) 低通净化滤波器,截止频率为 12 GHz,而在基准温度下插入自制低通滤波器,该滤波器由封闭在装有 Eccosorb 的红外密封盒中的微带线组成。请注意,图 S1 中表示为“反射探针”的类似线已用于现场估计腔体输入和输出耦合率 Γ a,b = γ a,b
近年来,超导量子处理器取得了重大进展。目前,包含几十个量子位的小型处理器已被证明 1 。处理器的运行保真度在不断提高 2–5 。我们有理由相信,量子算法很快就能在多个领域超越经典算法 6 。然而,要实现容错量子计算,还需要解决许多问题。基于超导电路的量子处理器的一个主要限制是量子位 (qubit) 的相干时间相对较短。通过提高量子位的固有相干性,可以减少操作容错逻辑量子位的开销 7 。因此,当在量子处理器中加入新组件或材料时,最重要的是不要降低物理量子位的相干性。传统上,超导量子电路是在未掺杂的硅衬底或蓝宝石衬底上制作的,以保持高相干性。人们对通过加入新材料和结构 8910 来扩展超导量子电路的功能性有着浓厚的兴趣。对于许多量子应用来说,一种备受关注的材料是 Ge 或 Ge 与硅的混合(硅锗 SiGe)。Ge 和 SiGe 已被用于从约瑟夫森场效应晶体管 11 到自旋量子比特 12 的各种应用中,最近有提议认为 SiGe 可以为片上光到微波转导提供途径 13 。在这里,我们研究了在 Si 衬底上制作的转导量子比特 14 的相干特性,其中已添加由额外层外延硅 (epi-Si) 覆盖的 SiGe 异质结构。将 SiGe 技术与高相干性超导量子电路相结合的可能性可能对量子设备和应用的开发具有重要意义。我们试图回答的主要问题是,是否可以结合 Si/SiGe/Si 堆栈的生长来制造高相干性超导量子电路。为了验证这一假设,我们制造了具有四种不同电容器垫设计的 transmon 设备,如图 1a 所示,