1。海克尔的三个王国概念,惠特克的五个王国概念,卡尔·沃斯的三个领域概念2。微生物学的定义和范围;微生物学的应用;不同的微生物组3。地球时间表上微生物生命的起源,米勒的实验,内共生(蓝细菌),具有真核和原核细胞的特征
奥林匹克运动员,非政府组织与营养不良,素食饮食和NASA有什么共同点?对螺旋藻的热情!错误地称为“微藻”,螺旋藻实际上属于蓝细菌,是地球上最古老的蓝细菌之一。强烈的蓝绿色颜色,螺旋藻自然地在受热带的湖泊中生长。在1974年,世界卫生组织宣布螺旋藻为“未来的食物”,而联合国教科文组织则称其为“明天的理想和最完整的食物”。在过去的30年中,Greentech已成为欧洲领先的微藻生产国,以及其子公司绿色的绿色脂肪酸,对健康必不可少的多不饱和脂肪酸,从而增强了这些作物的发展目前,omega-3脂肪酸主要来自冷水脂肪鱼,如今受到过度捕捞的威胁。我们已经知道某些微藻可以合成螺旋藻。因此,我们要做的就是开发一种将其耕种的技术,以便能够将其用作omega-3s的可再生能源。微藻的好处不仅在食品上停止……绿色还将它们转化为一些目标市场的创新成分,例如动物和人类营养,化妆品,环境,农艺学和健康。
摘要:本文介绍了一个新颖,创新的开放多域平台,用于预警,以防止水库和水库中的不良事件,该平台可以测量温度,pH,氧化还原,电导率,浊度,叶绿素和植物蛋白。这些参数是蓝细菌开花的关键指标。此平台允许对湖泊和河流上重要位置的远程和分布式监视。电台的设计使两个有线传感器都可以直接连接到站点,并从与车站建筑物通信的本地分散测量点进行了无线数据收集。数据聚合系统是开放的,并且该站的技术解决方案是通用的,这意味着它可以使用不同的化学和生物学参数使用不同的传感器,例如,从市场和行业标准来看,例如《水框架指令》。该平台还具有内置的机器学习和数据分析机制,可以优化实现所需数据获取水平所需的电台数量。传感器分散和站自主权确保测量的灵活性和可扩展性。关键词:水体,水化学和生态状况,蓝细菌的开花,测量平台
蓝细菌是唯一能够进行氧合光合作用的原核生物。许多蓝细菌菌株可以生活在不同的营养模式下,从光自营养和异养性到综合营养的生长。然而,允许这些生活方式之间的灵活切换的调节机制知之甚少。作为Ca-Benson-Bassham(CBB)周期和分解代谢糖降解途径中CO 2的合成代谢固定,需要密集的调节网络,以启用同时进行的反对代谢流动物。最近将Entner-Doudoroff(ED)途径视为一种糖酵解途径,该糖酵解途径与糖原崩溃中的其他途径合作。尽管通过ED途径低碳浮标,但在ED途径中对突变体的代谢分析表明,表现出明显的表型,表明该途径的强烈调节作用。小的CP12蛋白通过抑制磷酸氨基胰蛋白酶和3-磷酸甘油醛脱氢酶来下调黑暗中的CBB循环。对具有CP12变体菌株的代谢组和氧化还原水平分析的新结果扩展了CP12调节在昼夜条件下对适应外部葡萄糖供应的已知作用,以及在光中对CO 2水平的发挥作用。此外,碳和氮代谢与维持必不可少的C/N稳态密切相关。小蛋白质PIRC被证明是磷酸甘油酸突变酶的重要调节剂,该酶将这种酶鉴定为CBB循环降低糖酵解的碳分配的中心分支点。在氮饥饿实验期间,突变体D PIRC的代谢物水平改变了这种调节机制。在关键的代谢分支点调节碳分配的新机制可以确定碳流向所需化合物的靶向重定向的方法,从而有助于进一步建立蓝细菌作为绿细胞工厂,作为生物技术应用,并同时利用日光和co2。
Porto 7抽象的生物聚合物具有巨大的适用性,除了与化石能源相比,还具有可生物降解的来源和相对较短的寿命。其中一些生物聚合物是多羟基烷酸酯(PHAS),这是一类具有形成塑料膜的聚合物,类似于石化塑料。几项研究表明,微藻/蓝细菌是光合微生物的类型,可用于以较低的成本获取PHA,因为它们对生长的营养需求最少,并且自然是光自养生的,这意味着它们使用光和CO 2作为主要能源。此外,微藻具有高生产率的潜力,对环境条件的变化具有耐受性,并且可以在不适合农业的地区种植。这些光合微生物产生的这些PHA塑料膜可以是构建具有抗菌特性的功能性膜的替代方法,该膜与精油(著名的活性包装,包装行业的未来)一起融合在一起。这项工作展示了这些生物聚合物在包装行业中的生产,提取,生物合成和应用观点,例如与精油合并的薄膜。关键词:微藻,蓝细菌,生物塑料,生物聚合物,多羟基烷烃,精油。
co 1:获得有关微生物的营养运输和生长特征的知识以及能量产生的生存机制。CO 2:了解中央代谢途径,能源生产和生长特征。CO 3:获得有关绿色,紫色细菌和蓝细菌的有氧呼吸和光合作用的见解。co 4:通过微生物中不同代谢途径分析厌氧呼吸和发酵的概念。
摘要:中粒细胞和蓝细菌具有广泛的生物技术应用。然而,对生物活性分子的工业需求和这些分子的冗余需求导致需要增强生产和发现专门代谢物的新方法。共培养是作为解决这些挑战的一种有希望的方法。在这种情况下,这项工作旨在描述涉及中性和极端光合微生物的共培养方法的最新技术,并讨论这种方法的优势,挑战和局限性。共培养被定义为一种生态学驱动的方法,其中涉及蓝细菌和微观的各种共生相互作用可用于探索新的化合物和增强的产生。通过基于共培养的研究支持该想法,关于新的生物活性代谢物表达和增加产量的有希望的结果。此外,光合微生物在极端环境中壮成长的代谢多样性和进化适应可以通过允许实施这些微生物来提高共培养的效率。然而,生态相互作用的复杂性以及缺乏共培养方案的标准化是其成功和科学验证的障碍。使用 - 组和基因工程进行共生互动的进一步研究,以及为了克服这些局限性的共生设计和共同培养的预测实验设计。
尽管人为活性是温室气体(GHG)排放量增加的主要驱动因素,但必须承认湿地是这些气体的重要来源。巴西的pantanal是最大的热带内陆湿地,包括许多带有淡水和苏打湖的湖泊系统。这项研究的重点是苏打湖,以探索潜在的生物地球化学循环以及从水柱(尤其是甲烷)中生物性温室气体排放的贡献。每个检查的湖泊的季节性变化和富营养状况都显着影响温室气体排放。富营营养的浑浊湖(ET)显示出明显的甲烷排放,这可能是由于蓝细菌开花所致。蓝细菌细胞的分解,以及通过光合作用的有机碳的涌入,加速了异养社区在水柱中高有机物含量的降解。此过程释放的副产物随后在沉积物中代谢,导致甲烷产生,在干旱增加时期更为明显。相比之下,由于水中的硫酸盐水平高,贫营养性浑浊湖(OT)避免了甲烷排放,尽管它们确实发出了CO 2和N 2O。清晰的植被贫营养的浊度湖(CVO)也发射了甲烷,这可能是由于植物碎屑分解过程中有机物输入而发出的,尽管其水平低于ET。多年来,有关趋势的一种
- “收集De L'Institut Pasteur”(CIP), - 蓝细菌(PCC)的巴斯德培养物, - 生物医学(ICAREB) - biobank单位的自适应研究的综合收集。在2018年,第四个单位加入了CRBIP:微生物文化的全国收藏(CNCM)。自2022年以来,已经建立了病毒(CVIP)和真菌(CFIP)集合的过程。CRBIP项目管理办公室(PMO)已于2022年正式化,在项目的管理中持有横向作用 - 除了内部研究项目以外。收集管理单位负责与其特定的生物资源和其内部研究项目有关的生物库活动。CRBIP位于巴黎第15区的巴斯德研究所的校园。将整合到其范围内的事实是世界上第一个微生物的收藏之一,即CIP;蓝细菌的全球参考收集,PCC;法国CNCM唯一的IDA(国际存款机构)收藏;加上人类来源的生物资源,Icareb-biobank;除了成为巴斯德研究所的一部分的事实外,还将该中心作为国家和国际层面的独特位置。它还鼓励CRBIP开发一系列专业产品和服务,并进一步开发某些单位以在2025年为ISO 20387标准提供认证。
光子微生物(例如蓝细菌和微藻)可以在地下遗产地点易于增殖,在地下遗产地点引入人工照明设备已经显着改变了以前稳定的环境条件。在Reims(France)中雕刻在地下粉刷香槟地窖中的浅浮雕上的延长的Lampenflora生物膜生长(法国)代表了一个经常性的生物殖民化问题,需要定期清洁。这项工作的目的是使用基于多氧碱离子液体(POM-ILS)的预防性杀生物处理来限制Lampenflora在粉笔底物上的生长。在实验室进行的杀生物测定法显示了两种不同的无色POM-POM-il涂层比商业预防性RI80更有效,对从肥大的BAS浮雕,pseudostichoccus monallantoides和chofloris zofloris zofingiensis中分离出的两种藻类菌株。但是,当应用于湿粉笔时,只有一个POM-IL变体能够持续预防生物膜生长,这复制了地窖的更为剧烈的自然环境条件,并且可以限制杀生物涂层的性能。至关重要的是,涂层浓度研究表明,来自先前实验的POM-IL涂层平板如何保留其杀生物活性,并在重新接种具有藻类和蓝细菌的涂层平板后可以防止亚次依次重新固定。因此,POM-ILS代表了在Pommery Champagne Cellar独特的地下环境中消除粉笔浮雕上Lampenflora增长的出色候选人。