住宿和餐饮服务 7,157 315 169,139 零售贸易 6,222 499 130,704 医疗保健和社会援助 3,268 239 136,205 行政、支持和废物管理 1,889 161 53,848 运输和仓储 1,787 115 54,768 建筑 1,401 150 66,491 专业、科学和技术服务 1,205 229 80,213 其他服务(公共管理除外) 1,123 228 31,011 金融和保险 1,090 120 64,828 房地产和租赁 1,052 196 41,759 信息 741 46 32,488 艺术、娱乐和休闲686 48 13,921 批发贸易 675 60 29,471 制造业 650 46 37,243 教育服务 637 32 18,127 公司和企业管理 88 7 4,991 未分类行业 54 17 887 公用事业 43 5 2,828 采矿、采石和石油和天然气开采 3 合计 29,823 2,517 971,148
(Gu等人,2020)Modelfinder模型推荐的模型用于基于TTCDS基因串联的数据矩阵的系统发育分析。getorganelle管道用于组装清洁测序中的质体,读取用于验证组件的准确性和注释质体质体基因组注释者(PGA)的精确性,该质子使用了plastome
利用 ReMOT 控制实现中华按蚊的高效基因编辑 杨晓林 1+、凌霞 1+、孙泉 2+、邱品品 1、项凯 1、洪俊峰 1、何树林 1、陈杰 3、丁鑫 3、胡海 3、何正波 1、周曹 1*、陈斌 1*、乔梁 1* 1 重庆师范大学生命科学学院昆虫与分子生物学研究所,重庆市媒介昆虫重点实验室,重庆 401331。 2 重庆市巡检生命科技有限公司,重庆 400700。 3 西南大学资源昆虫国家重点实验室,重庆 400715 论文标题:中华按蚊的 ReMOT 控制 + 同等贡献。 * 通讯作者。电子邮箱:qiaoliangswu@163.com; zhouc@cqnu.edu.cn; bin.chen@cqnu.edu.cn 摘要:CRISPR/Cas9 基因编辑为揭示蚊子发育和蚊媒疾病传播的分子机制以及探索遗传控制策略提供了一种有效的方法。然而,将 Cas9
引起疟疾的疟原虫通过传染性按蚊叮咬传播。有关寄生虫传播方式的详细信息,请参阅附录 A:疟疾生命周期。五种疟原虫可导致人类患病:恶性疟原虫、间日疟原虫、卵形疟原虫、三日疟原虫和诺氏疟原虫。由于疟疾在 20 世纪 50 年代初在美国被消灭,因此人们认为美国居民对疟疾没有免疫力,容易患上重病甚至死亡。在美国,每年约有 2,000 人被诊断出患有疟疾,其中大多数人是在存在持续蚊媒传播(输入性疟疾)的国家感染疟疾的。由于可传播疟疾的按蚊遍布大多数州,因此在美国境内,疟疾有可能从输入病例传播给非旅行者(但很少见)。
persimmons。科学346,646-650。Atsumi R,Nishihara R,Tarora K等(2019)鉴定了与桑树(Morus alba L.)中与男性性别确定有关的主要遗传标记。Euphytica 215,187。Baird NA,Etter PD,Atwood TS等(2008)使用测序RAD标记的快速SNP发现和遗传映射。PLOS ONE 3,E3376。Butt MS,Nazir A,Sultan TM,SchroënK(2008)Morus Alba L. Nature的功能补品。趋势食品SCI Tech 19,505-512。n n,Zhang C,Qi X等人(2013)桑树莫鲁斯·诺比利斯的基因组序列草稿。nat Commun 4,2445。Jain M,Bansal J,Rajkumar MS,Sharma N,Khurana JP,Khurana P(2022)印度桑树的基因组序列草案(Morus indi-CA)为功能和转化基因组提供了资源。基因组学114,110346。jiao F,Luo R,Dai X等(2020)染色体级参考和种群基因组分析提供了有关驯化桑树(Morus alba)的进化和改善的见解。摩尔植物13,1001-1012。Lieberman-Aiden E,Van Berkum NL,Williams L等(2009)远程相互作用的全面映射揭示了人类基因组的折叠原理。科学326,289-293。Matsumura H,Miyagi N,Taniai N等(2014)使用Rad-Seq分析在苦瓜(Momordica Charantia)中对Gy-Noecy进行映射。PLOS ONE。 9,E87138。 Muhonja L,Yamanouchi H,Yang CC等(2020年),全基因组SNP标志物发现和使用双数量限制性限制的站点相关的DNA示波对桑树品种进行了系统发育分析。PLOS ONE。9,E87138。 Muhonja L,Yamanouchi H,Yang CC等(2020年),全基因组SNP标志物发现和使用双数量限制性限制的站点相关的DNA示波对桑树品种进行了系统发育分析。9,E87138。Muhonja L,Yamanouchi H,Yang CC等(2020年),全基因组SNP标志物发现和使用双数量限制性限制的站点相关的DNA示波对桑树品种进行了系统发育分析。基因726,144162。尼泊尔MP,弗格森CJ,May Finderd MH(2015)繁殖系统和
gengorobuna * carassius cuvieri○□○□□□□carassius sp○□●■做○□○□○□●■□丢失的鱼 *疑虑的anguillicaudatus○○○□cat鱼Rhinogobius sp○□○□●○□●○□○□□□■
来源:提供的数据代表了美国人口普查局 2019 年、2020 年和 2021 年县商业模式、美国经济分析局、美国能源部、美属维尔京群岛经济研究局年度旅游指标以及 NOAA 合同 #EA-133C-16-CQ-0045 下收集的数据中的最佳可用数据。由于其他海洋经济部门的数据被抑制,每个部门的指标总和将不等于海洋经济总量。进一步的不一致也可能是由于抑制造成的。就业数据不包括自雇工人。
槲寄生在法国赤松林中发生率的上升是阿尔卑斯山赤松林保护和可持续性面临的主要问题之一。与天然林相比,人工林更容易受到生物入侵。研究区域覆盖着针叶林(低海拔地区主要是法国赤松),法国西南部阿尔卑斯山的一部分黑森林受到半寄生虫槲寄生的严重影响。由于槲寄生的发生,研究区域的法国赤松树枝肿胀、树体弯曲;树木死亡率惊人。为了管理和尽量减少生物入侵,检测和绘图在森林保护中起着关键作用。通过遥感技术检测和绘制生物入侵地图是研究人员要克服的挑战。高分辨率 (VHR) 卫星图像和航空图像的进步以及遥感和 GIS 技术的应用,已在森林健康状况的检测、绘图和监测方面显示出良好的效果。在本研究中,数字航空正射影像(分辨率 15 厘米)和 VHR 卫星图像 WorldView-2(全色 0.5m 和多光谱 2m)用于通过基于像素的最大似然分类器检测和绘制欧洲松林中槲寄生的存在。在 WorldView-2 光学影像上,成功绘制了欧洲松林的分布,精度较高(96%),kappa 系数为 0.84。存在槲寄生的欧洲赤松在所有波段的光谱反射率都较低,但 WorldView-2 的 NIR1、NIR2 和红边对槲寄生的区分能力更强。同样,植被指数 NDVI 85(红光和 NIR2 的波段组合)也有区分槲寄生的潜力。此外,结果表明,槲寄生与海拔呈负相关和显著相关(r=-0.5135;p<0.01),而与欧洲赤松的 DBH 呈显著正相关(r=0.52;p<0.01)。通过使用海拔和 DBH 建立了弱但统计显著的多元回归和逻辑回归,以模拟欧洲赤松树中槲寄生的发生率。通过应用基于像素的最大似然算法对松林中的槲寄生进行检测,在 WorldView-2 图像中实现了总体分类准确率 (86%) 和 kappa 系数 (0.52)。2m 分辨率 WV-2 与 0.15cm 分辨率正射影像分类输出的比较表明,空间分辨率较低但光谱分辨率较高的 WV-2 影像的分类精度较高(86%)。这项研究揭示了高分辨率光学影像在检测和绘制树木侵染地图方面具有巨大潜力。检测和绘制此类生物入侵地图可为更好地管理森林提供有用信息。关键词:检测和绘图、欧洲赤松、槲寄生、光学影像、生物入侵
作物。对 87 种芒属植物基因型的初步筛选确定了胚性愈伤组织形成和再生的显著差异,而另一子集则显示出通过农杆菌或基因枪转化的能力差异——所有这些因素都可能影响基因编辑效率。针对五种基因型开发了优化程序,其中包括一种 Msi (2x)、两种 Msa (2x 和 4x) 和一种 Mxg (3x)。设计了一种多步骤筛选方法来设计能够成功靶向基因同源物的 gRNA,有利于靶向古异源多倍体芒属植物中的基因。在玉米中靶向以通过 CRISPR/Cas9 产生突变体的视觉标记基因 lw1 [36, 37, 38] 被选为芒属植物的靶向基因。编辑后的 lw1 中的叶子表型(淡绿色/黄色、条纹、白色)是一个引人注目的视觉标记