通常,公共蜂窝系统 (GSM) 在紧急情况下可能无法工作,因为蜂窝的接入信道饱和会导致流量缓慢,直至无法通信。专用无线电系统应确保即使在过载情况下也能成功通信。在紧急情况下,参与其中的人员必须以群组模式(点对多点)进行通信。这有利于操作,因为每个人都实时了解当前情况。重要的是在 0.5 秒内执行非常快速的群组呼叫设置,这比 GSM 网络所需的数秒(通常为 5 到 10 秒)要短很多倍。最后,公共蜂窝电话网络的覆盖范围旨在覆盖最大人口;它不旨在覆盖潜在危险区域,例如山区、隧道和偏远地区。由于上述原因,紧急实体需要价格合理、灵活、高度可靠、专有的无线电通信网络。
有动力的轮椅和电动踏板车可能会易受电磁干扰(EMI)的影响,这是从电源站,电视台,业余无线电(HAM)发射器,双向电导器,双向传播和蜂窝电话发出的电磁能(EM)。干扰(来自无线电波源)可能会导致电动踏板车释放其制动器,自行移动或朝着无意的方向移动。它也可能会永久损坏电动踏板车控制系统。可以以每米伏(v/m)为单位测量干扰EM能量的强度。每个电动踏板车都可以抵抗EMI达到一定强度。这称为其“免疫水平”。免疫水平越高,保护越大。目前,当前的技术能够至少达到20 v/m的免疫水平,这将提供有用的保护,以免受更常见的辐射EMI来源。该电动踏板车模型的这种免疫水平尚不清楚。
锂电池的高能量密度及其建筑物中使用的材料使锂电池在损坏时容易产生热失控。3热失控是一种反应,其中电池会排放能量并开始以不受控制的反应开始自加热。虽然其他类型的电池可能会遇到热失控,但由于它们存储的能量大量,锂电池特别容易容易发生。除了热失控外,许多锂电池还含有易燃液体电解质。锂电池的损坏或管理不善会在垃圾桶,运输,中间设施或终止寿命设施(例如垃圾填埋场或回收设施)中造成大火的风险。由电池缺陷引起的4次自发火灾导致某些蜂窝电话被禁止在2016年联邦航空管理局(Federal Aviation Administration)乘坐任何航空公司飞行,5强调了潜在的风险,即使相对较小的锂电池也可能摆姿势。
从历史上看,随着商用双向无线电用户数量的增长,信道间隔不断缩小,必须分配更高频率的频谱才能满足需求。更窄的信道间隔和更高的工作频率需要更严格的频率公差,无论是发射器还是接收器。1940 年,当只有几千台商用广播发射机在使用时,500 ppm 的公差就足够了。今天,数百万部蜂窝电话(工作在 800 MHz 以上的频段)中的振荡器必须保持 2.5 ppm 或更高的频率公差。896-901 MHz 和 935-940 MHz 移动无线电频段要求基站的频率公差为 0.1 ppm,移动站的频率公差为 1.5 ppm。容纳更多用户的需求将继续要求越来越高的频率精度。例如,NASA 的个人卫星通信系统概念将使用类似对讲机的手持终端、30 GHz 上行链路、20 GHz 下行链路和 10 kHz 信道间隔。终端的频率精度要求是 10 8 的几分之一。
卢卡斯·沃德利(Lucas Wadley)和安吉拉·弗莱什曼(Angela Fleischman)收到:2024年12月4日。接受:2024年12月18日。引用:卢卡斯·沃德利(Lucas Wadley)和安吉拉·弗莱施曼(Angela Fleischman)。主要的骨髓纤维化进展:蜂窝电话游戏。血液学。2025年1月2日。doi:10.3324/haematol.2024.286665 [Epub在印刷前]出版商的免责声明。e-发布在印刷前对于快速传播科学而言越来越重要。Haematologica是已完成常规同行评审并已被接受出版的早期手稿的电子发布PDF文件。出版已由作者批准。在印刷之前发行电子版本后,手稿将进行技术和英语编辑,排版,证明校正和呈现以供作者的最终批准;然后,手稿的最终版本将出现在日记的常规期刊中。所有适用于该期刊的法律免责声明也与该生产过程有关。
简介 近几年,手机作为不受时间和空间限制的个人双向通信方式变得极为流行,仅在日本就有 5000 万用户。然而,随着用户数量的增加,频率短缺已成为一个问题。与此同时,需要立即找到更高级技术问题的解决方案,包括通信信道的可靠性、声音质量、国际漫游需求以允许移动通信设备在全球范围内使用,以及更快的数据通信以实现多媒体移动通信。为了解决这些问题,使用扩频的码分多址 (CDMA) 系统已成为新移动通信系统的主流,并且已在一些国家用于窄带通信。此外,为了开发下一代数字蜂窝电话的通用系统,国际电信联盟(ITU)目前正在制定 IMT-2000 标准,预计在 2001 年初实施。领先的候选方案是将日本主导基础技术开发的宽带 CDMA(W-CDMA)空中接口系统与欧洲开发的移动通信 GSM 核心网络相融合,现在
简介 近几年,手机作为不受时间和空间限制的个人双向通信方式变得极为流行,仅在日本就有 5000 万用户。然而,随着用户数量的增加,频率短缺已成为一个问题。与此同时,需要立即找到更高级技术问题的解决方案,包括通信信道的可靠性、声音质量、国际漫游需求以允许移动通信设备在全球范围内使用,以及更快的数据通信以实现多媒体移动通信。为了解决这些问题,使用扩频的码分多址 (CDMA) 系统已成为新移动通信系统的主流,并且已在一些国家用于窄带通信。此外,为了开发下一代数字蜂窝电话的通用系统,国际电信联盟(ITU)目前正在制定 IMT-2000 标准,预计在 2001 年初实施。领先的候选方案是将日本主导基础技术开发的宽带 CDMA(W-CDMA)空中接口系统与欧洲开发的移动通信 GSM 核心网络相融合,现在
从历史上看,随着商用双向无线电用户数量的增长,信道间隔不断缩小,必须分配更高频率的频谱来满足需求。更窄的信道间隔和更高的工作频率需要更严格的频率公差,无论是发射器还是接收器。1940 年,当只有几千台商用广播发射机在使用时,500 ppm 的公差就足够了。今天,数百万部蜂窝电话(工作在 800 MHz 以上的频段)中的振荡器必须保持 2.5 ppm 或更高的频率公差。896-901 MHz 和 935-940 MHz 移动无线电频段要求基站的频率公差为 0.1 ppm,移动站的频率公差为 1.5 ppm。容纳更多用户的需求将继续要求越来越高的频率精度。例如,NASA 的个人卫星通信系统概念将使用类似对讲机的手持终端、30 GHz 上行链路、20 GHz 下行链路和 10 kHz 信道间隔。终端的频率精度要求是 10 8 的几分之一。
1.0 主题 组织依靠信息技术和基于该技术开发的信息系统来成功执行其任务和业务功能。信息系统可以包括从高端超级计算机到个人数字助理和蜂窝电话的各种计算平台作为组成部分。信息系统还可以包括非常专业的系统和设备(例如,电信系统、工业/过程控制系统、测试和校准设备、武器系统、指挥和控制系统以及环境控制系统)。联邦信息和信息系统面临严重威胁,这些威胁可能通过损害这些系统正在处理、存储或传输的信息的机密性、完整性或可用性,对组织运营(包括任务、功能、形象和声誉)、组织资产、个人、其他组织和国家产生不利影响。对信息和信息系统的威胁包括环境破坏、人为或机器错误以及有目的的攻击。鉴于这些威胁的严重性和日益增长的危险性,组织各级领导者必须了解其实现充分信息安全和管理信息系统相关安全风险的责任。以下政策提供指导,以确保评估按照 DFC 和联邦政策进行。
关于误解对健康和福祉的有害后果有许多公开问题。尽管主流媒体经常报告说,由于阴谋论,个人拒绝了Covid-19的救生医院治疗(Brummel,2022),但重要的是要注意,这些发现并未表征一般人群。暴露于外国虚假信息运动可以预测世界各地的疫苗吸收较低(Wilson&Wiysonge,2020年)。然而,显然缺乏直接的实验证据,将暴露与误解与观察到的行为变化联系起来,纵向关联往往很小。关于疫苗犹豫的公共卫生和经济影响的新兴报告令人震惊(加拿大学院委员会[CCA],2023年; Simmons-Duffin&Nakajima,2022年),但疫苗接种决策是复杂的,并且受到许多因素的影响。尽管如此,一些模型表明,如果不干预,抗疫苗接种叙事将在未来十年内主导Facebook(N. F. Johnson等,2020年)。错误信息的其他潜在后果包括暴力和破坏财产,例如人们在新闻报道5G无线技术危险的新闻报道之后,人们设置了蜂窝电话塔(Jolley&Paterson,2020年)。