供应链行业是推动新加坡发展为全球供应链中关键枢纽的关键部门之一。供应链工程中的MSC通过在供应链工程功能中进行集成和全面的计划,例如库存管理,订单实现,采购,分配,仓库和运输,以综合的计划来满足制造业和服务部门的需求,并为毕业生提供了正确的技能,以管理端端供应链。该计划广泛依赖行业演讲者,现场访问,案例研究以及动手的计算机建模和游戏玩法来补充课堂学习。
在目前的工作中,通过[3+2]氮氧化物与碱的二氧化吡喃唑 - 螺旋螺旋衍生物合成了一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列二甲苯和三替代的吡唑螺旋螺旋衍生物,用于合成一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列碘介导的,无金属的途径。所有合成的氧唑衍生物均以FTIR,1 H NMR,13 C NMR和HRMS数据为特征。通过X射线分析证实了其中一种产品的结构,即乙基-3-(1,3-二苯基-1-4-吡唑-4-基)-5-苯基异恶唑-4-羧酸盐。将所有合成化合物均筛选为抗菌活性,并与标准药物Amoxicillin进行比较。某些化合物表现出与阿莫西林相当或更高的抗菌活性。此外,合成化合物表现出中度至优异的抗氧化活性。针对小鼠成纤维细胞(动物)和植物种子发芽细胞系(Vigna radiata)研究了所有产物的细胞毒性。
胃癌(GC)是消化道中普遍存在的恶性肿瘤,在全球范围内排名第五最常见的恶性肿瘤。它的特征是临床特征,例如转移的趋势和不利的预后。铁肉芽作用是一种最近鉴定的细胞死亡形式,代表了一种新型的细胞衰老模式,与传统的坏死和凋亡概念不同。许多研究发现,铁毒性在GC内的增殖,转移,耐药性和微环境调节中起着重要作用。本综述总结了铁凋亡的机理及其在GC细胞的发生和发育中的作用。它提供了例子,证明了各种抗肿瘤药物如何在GC细胞中诱导铁凋亡。此外,它总结了在GC的未来治疗中铁凋亡的潜在应用值。
大学-产业-政府互动的三螺旋结构是日益知识化社会创新的关键。随着知识的创造、传播和利用从工业生产和治理的边缘转移到中心,产品和流程中的创新概念本身也在发生转变。取而代之的是“创新中的创新”这一新概念——重组和增强促进创新的组织安排和激励措施。这种相对独立的机构领域的三螺旋交汇产生了混合组织,例如大学、公司和政府研究实验室的技术转让办公室以及商业和金融服务机构,例如天使网络和风险资本,用于世界各地日益发展的新技术型公司。三螺旋描述了这种新的创新模式,并帮助学生、研究人员和政策制定者解决以下问题:我们如何加强大学在区域经济和社会发展中的作用?各级政府如何鼓励公民积极推动创新,反过来,公民又如何鼓励政府?企业如何相互合作、与大学和政府合作,以提高创新能力?实现这些目标的关键要素和挑战是什么?
红外 (IR) 发射稀土掺杂材料已广泛用于制造光纤放大器、电信、光电子和波导等各个领域的集成光学设备的有源元件。在各种稀土元素中,三价铒离子 (Er 3+) 备受关注,因为它们的发射行为跨越了 1300–1650 nm 的低损耗电信窗口。在本文中,我们报告了两种类型的聚合物波导放大器。8 cm 长、光刻图案化的螺旋波导使用 95 mW 的 980 nm 泵浦功率提供 8 dB 的增益。增益在 1530 至 1590 nm 之间观察到。我们还报告了使用基于双光子光刻的 3D 打印方法制造的聚合物波导放大器的首次演示,为快速制作有源 3D 打印设备和可能超越平面限制的有源光子设备奠定了基础。
窄带发射多谐振热激活延迟荧光 (MR-TADF) 发射器是一种有前途的解决方案,无需使用光学滤光片即可实现当前行业针对蓝色的色彩标准 Rec. BT.2020-2,旨在实现高效有机发光二极管 (OLED)。然而,它们的长三线态寿命(主要受其缓慢的反向系统间穿越速率影响)会对器件稳定性产生不利影响。在本研究中,设计并合成了螺旋 MR-TADF 发射器 (f-DOABNA)。由于其𝝅 -离域结构,f-DOABNA 拥有较小的单重态-三重态间隙𝚫 E ST ,同时显示出异常快的反向系统间穿越速率常数k RISC ,高达 2 × 10 6 s − 1 ,以及非常高的光致发光量子产率𝚽 PL ,在溶液和掺杂薄膜中均超过 90%。以 f-DOABNA 为发射极的 OLED 在 445 nm 处实现了窄深蓝色发射(半峰全宽为 24 nm),与国际照明委员会 (CIE) 坐标 (0.150, 0.041) 相关,并显示出较高的最大外部量子效率 EQE max ,约为 20%。
摘要 - 本文介绍了具有螺旋形对称性的超导和电阻线的建模,并受到外部场和运输电流的影响。螺旋结构为3-D,因此在笛卡尔坐标系统中产生计算密集型模拟。我们在本文中表明,通过使用坐标系统的螺旋体系统,可以解决要解决的问题,从而大大降低了综合成本。我们首先引入了最新方法,并将其应用于螺旋形的对称边界条件(例如,具有或没有传输电流的轴向外部磁场)的H-φ-构造,重点是功能空间离散化。然后,我们将方法扩展到一般边界条件(例如横向外部磁场),并使用线性材料呈现数值结果。,我们讨论了由嵌入在电阻基质中的超级传导灯泡制成的复合线中的频率损失。最后,我们为使用非线性材料的广义模型提供了前景。
有关此指南的内容关键数据保护概念生物识别识别我们如何证明我们遵守数据保护义务?我们如何合法处理生物特征数据?我们如何公平处理生物识别数据?准确性原理如何适用于生物识别数据?我们如何确保生物识别数据的处理是透明的?我们如何考虑对生物识别数据的权利请求?我们如何确保生物特征数据安全?
本公告包含“前瞻性信息”,该信息基于公司的期望,估计和预测,截至发表声明之日起。此前瞻性信息包括有关公司业务策略,计划,发展,目标,绩效,增长,现金流,预测,目标和期望,矿产储量和资源,勘探和相关费用的陈述。通常,可以通过使用前瞻性术语,例如“ Outlook”,“预期”,“预期”,“项目”,“目标”,“潜在”,“可能”,“相信”,“估算”,“期望”,“''',“可能”,“愿意”,“愿意”,“愿意”,“”,“”,“”,“”,“”阅读此公告的人警告说,此类陈述仅是预测,并且公司的实际未来结果或绩效可能有重大不同。前瞻性信息受到已知和未知的风险,不确定性和其他因素,这些风险可能会导致公司的实际结果,活动水平,绩效或成就水平与此类前瞻性信息所表达或暗示的因素有实质性不同。
由于连续功率 (cw)、大电流加速器在各种应用中都是必需的,例如散裂中子源和加速器驱动的嬗变技术[1],因此稳定、高密度等离子体源作为离子源变得越来越重要。开发能够以大电流、低发射率束流连续工作的离子源对这些高强度加速器来说是一个巨大的挑战。最近,通过满足这些要求,已经为大电流加速器开发了使用电子回旋共振 (ECR) 的微波离子源[2]。然而,这种源需要相对较强的磁场,这可能会增加发射率、尺寸和成本,以便为未来的应用开发更高电流密度和更大束流的源。螺旋模式产生了稳定的高密度等离子体,主要用于微电子等离子体处理[3]。注意到螺旋波可以在低频、低场、高密度范围内传播,螺旋等离子体源被提议作为连续波大电流、低发射率加速器的离子源[4]。为了证实螺旋等离子体的这些优良特性,构建了一个紧凑的高密度螺旋等离子体源,并研究了其特性。第二部分描述了螺旋等离子体源的实验装置和等离子体的特性。第三部分研究了螺旋等离子体的束流提取特性。通过实验和模拟,研究了在低于 5 kV 的低提取电压下,采用简单提取几何结构的束流特性。最后一节给出了结论。还提出了一种使用螺旋波的新型强流离子源设计。