摘要 提出了一种使用单面单圈螺旋天线作为反射元件的圆极化宽带反射阵列。设计、仿真和测量了一个 X 波段的 11 × 11 元件反射阵列,它展示了宽带宽和大角度波束扫描性能。通过旋转偏心反射元件可获得 360 ◦ 的相位范围。全波模拟表明,在 10 GHz 的中心频率处实现了 29.1% 的 1-dB 带宽,在法向入射角(φ=0◦,θ=0◦)下最大增益为 23.9 dB,其中聚焦光束的测得增益为 23.6 dB,孔径效率为 51.7%。模拟和测试的轴比在 8.9 GHz 至 10.7 GHz 范围内小于 3 dB。此外,通过将入射角从 + 30 ◦ 变为 − 30 ◦,验证了大角度光束扫描性能
假设螺旋天线发射所吸收的功率已知,推导了螺旋推进器腔内磁化等离子体流的轴对称宏观模型。从设计和操作参数的角度讨论了电离、约束、亚音速流和生产效率。获得了理想等离子体条件的解析解和简单的缩放定律。然后将腔模型与外部磁喷嘴模型匹配,以表征整个等离子体流并评估推进器性能。评估了热、电和磁对推力的贡献。能量平衡提供了腔和喷嘴中离子和电子之间的功率转换,以及光束功率、电离损失和壁面损失之间的功率分配。评估了推进器的效率,并确定了效率低下的主要原因。喷嘴中无碰撞电子群的热力学行为被认为是鲜为人知的,并且对于完全等离子体膨胀和良好的推力效率至关重要。 VC 2013 美国物理学会。[http://dx.doi.org/10.1063/1.4798409]
摘要 — 人眼含有与各种疾病相关的多种生物标记物,因此电子隐形眼镜是诊断和治疗这些疾病的理想非侵入式平台。最近的技术进步使得人们能够通过眼压 (IOP) 检测来监测和诊断青光眼,通过葡萄糖浓度检测来监测和诊断糖尿病,以及使用其他生物传感器来感测 pH 值和温度。不同的传感器设计导致了不同的电力传输技术,其中电感耦合电力传输被认为最适合电子隐形眼镜的电力传输应用。因此,环形天线、螺旋形天线以及采用石墨烯和混合银纳米纤维等纳米材料的天线已在工业、科学和医疗 (ISM) 频带下被探索用于无线电力传输 (WPT) 和数据通信。值得注意的是,螺旋天线也被视为使用电容式传感器检测压力引起的频率变化的 IOP 感测的组成部分。本文回顾了电子隐形眼镜传感器及其电力传输技术的最新技术。本文介绍了多种传感方法、材料和电力传输技术以及电子隐形眼镜未来的良好趋势和挑战。
摘要:X 射线计算机断层扫描 (CT) 已成为检测金属增材制造 (MAM) 部件内部缺陷(如孔隙度、夹杂物、未熔合等)的首选无损检测 (NDT) 方法。此外,由于质量标准的建立以及制造系统、加工路线和检测手段的成熟,这种制造技术在航空航天领域的应用也日益广泛。例如,欧洲空间标准化合作组织制定了一项特定标准(由欧洲航天局 (ESA) 协调),用于 AM 质量保证、加工和空间应用要求 (ECSS-Q-ST-70-80C),表明应特别对关键结构和功能部件进行 CT 检查。同样,大型 OEM(原始设备制造商)也制定了自己的标准,将 CT 视为关键部件的强制性 NDT 方法,但其他技术(如渗透检测 (PT)、数字射线照相术 (DR) 或目视检查 (VI))也被认为是确保部件质量所必需的。本文介绍了硬件鉴定中不同 NDT 的各种应用示例:CHEOPS 太空任务的钛支架;PROBA3 的铝螺旋天线;JUpiter ICy 卫星探测器任务 (JUICE) 的铝支架;或其他航空部件,如 Clean Sky 2 IADP 演示器的铝整流罩和 RACER 直升机的结构钛襟翼配件。上述案例不仅将从检查的执行情况进行分析,还将从专门为 AM 开发或适应这种新型制造技术的不同标准和要求的应用进行分析。
立方体卫星,或称CubeSat,确实是一种最近越来越受欢迎的纳米卫星,尤其是那些将立方体卫星视为太空计划传统卫星替代品的人。这是因为它们成本低,并且可以使用商用现货组件制造。立方体卫星的最小尺寸为1U(100 × 100 mm2)。1U可轻松升级以用于更大规模的任务(2至12U)。立方体卫星可执行传统卫星的所有基本活动。其电力需求由固定在立方体卫星机身上的电池组和太阳能电池板满足。然而,由于立方体卫星的尺寸比传统卫星小,因此其子系统必须非常小。此外,天线设计是卫星的一个关键组成部分,包括地面站和卫星之间的下行和上行通信。然而,它的尺寸和重量必须与立方体卫星兼容,并必须具有良好的辐射性能[1]。立方体卫星的天线数量最近有所增加,这些卫星工作在 437 MHz(即业余超高频频段),这不仅可以实现无缝上行和下行通信,还可以使一个立方体卫星在网络中相互连接。此外,超高频范围内的立方体卫星天线配置提供平面和非平面几何形状。文献中已经发表了许多适用于在超高频频段工作的立方体卫星的平面和非平面天线配置,包括缝隙天线、偶极天线、单极天线、螺旋天线、八木天线和曲折线天线。贴片天线和缝隙天线是连接轨道立方体卫星与地球上地面站的最佳选择,因为它们体积小、结构紧凑、弹性好、制造简单。它们还具有最小的辐射损耗、较低的色散和简单的输入匹配