物理学学位课程 2007/2008 学年课程和计划 线性代数 教师: Prof. CATENACCI Roberto 电子邮箱: roberto.catenacci@mfn.unipmn.it CFU 数: 6 年: 1 教学期: 2 学科代码: S0140 课程计划和推荐教材: 计划 考试方式:笔试和口试。实数和复数向量空间、生成器和基、子空间及其之间的运算、平面和空间中的平面和线、标量积和厄米积。线性应用和相关矩阵、行列式、秩和迹、核和图像、基的变化。线性系统理论。一些值得注意的矩阵类及其性质:特征值和特征向量、对称和 Hermitian 矩阵的对角化、特征多项式、凯莱-汉密尔顿定理及其应用。欧几里得几何:双线性形式和二次形式。二次形式的对角化。标量积。推荐文本 文本将在课堂上注明 教师笔记 数学分析 I 教师:GASTALDI Fabio 教授 电子邮件:fabio.gastaldi@mfn.unipmn.it CFU 数量:8 年:1 教学期:1 学科代码:S0136 计划 该课程由理论课和实践练习组成。考试包括笔试和口试。涵盖的主题:实变量的实函数:术语、运算及其对图形、组成的影响;反函数和相关例子。实变量的实函数的极限;左右限位。极限和代数运算;符号永久性定理和两名宪兵永久性定理。显著的局限性;无限的限制;单调函数的极限。连续函数;连续性和代数运算、符号的持久性。连续性和组成性;变量在限度内的变化。衍生物;右和左导数。可微函数的例子;可微函数的连续性。导数和代数运算;复合函数的导数。零点与中间值定理;反函数的连续性和可微性。反函数的例子及其导数的计算。相对的高点和低点;必要条件。罗尔、柯西、拉格朗日定理;零导数定理。单调性和派生性;不确定形式。洛必达定理及其后果。无限与无穷小;应用于不确定形式。带有皮亚诺和拉格朗日余项的泰勒公式。凸函数及其性质;拐点。基元及其多重性;不定积分;通过分部和替换进行不定积分。黎曼积分;几何解释。积分的线性和单调性。积分中值定理。连续或单调函数的可积性。关于区间的可加性。积分函数。积分学基本定理;通过替换和分部积分公式。推荐文本 Bramanti、Pagani、Salsa:数学、无穷小微积分和线性代数。 Ed. Zanichelli Marcellini,Sbordone:数学练习(2 卷)。 Ed. Liguori 老师将提供与特定主题相关的补充材料。
生成模型一直是机器学习研究中特别受关注的一个领域,成功的模型架构极大地改进了生成模型,包括变分自编码器 (VAE)、生成对抗网络 (GAN) 和可逆神经网络 (INN) [1-3]。除其他应用外,生成模型在事件生成中的应用也得到了广泛研究 [4-6]。与马尔可夫链蒙特卡洛 (MCMC) 技术 [7-11] 相比,生成模型的优势不仅限于提高推理速度,而后者迄今为止已成为领先的 LHC 模拟和解释方法。此外,生成模型可以进行端到端训练,从而实现更全面的应用,如展开 [12-14]、异常检测 [15-19] 等等 [20]。然而,这些神经网络 (NN) 的参数空间巨大,使其能够模拟复杂的交互,但这也导致对计算资源的需求巨大。流行的 NN 架构的规模早已达到计算可行性的边界。量子机器学习 (QML) 将量子计算的强大功能引入现有的机器学习基础,以建立并利用量子优势,从而实现量子算法独有的性能提升。虽然基于门的量子计算与经典计算有很大不同,但已经构建了许多与上述经典生成网络等效的模型,包括量子自动编码器 [ 21 ] 和量子 GAN [ 22 – 27 ]。值得注意的例外是 INN [ 28 , 29 ],它们尚未转移到 QML 领域。此类网络将成为量子神经网络 (QNN) 阵列的理想补充。虽然经典 INN 中雅可比行列式的可处理性使它们能够执行密度估计,这从本质上防止了模式崩溃,但通常无法有效地计算完整的雅可比矩阵 [ 30 ]。 INN 中完全可处理的雅可比矩阵(QNN 可用)将允许高效学习主要数据流形 [31-34],为可解释的表示学习和对底层过程的新洞察开辟机会。基于耦合的 INN 架构已通过经验证明对消失梯度问题更具弹性 [28],这使它们可以直接受益于具有许多参数的深度架构。然而,到目前为止列出的许多 INN 应用已经需要大量的训练资源。目前的研究表明,量子模型可以避免这种对巨大参数空间的需求。它们在表达力方面胜过常规 NN,能够用少得多的参数表示相同的变换 [35-39]。这一理论基础得到了几个专门构建的 QML 电路实例的支持,这些电路为专门设计的问题提供了比经典解决方案更有效的解决方案 [ 40 – 43 ]。QNN 已经成功应用于相对有限的高能物理问题 [ 21 , 25 , 44 – 46 , 46 – 51 ] 以及非 QML 方法 [ 52 – 56 ]。然而,据我们所知,尚未尝试构建可逆 QNN,该 QNN 可通过其可逆性用作生成任务的密度估计器。通过这项工作,我们旨在填补与经典 INN 量子等价的剩余空白,开发量子可逆神经网络 (QINN)。我们展示了如何将 QNN 流程中的每个步骤设计为可逆的,并展示了模拟网络估计分布密度的能力。作为原理证明,我们将我们的模型应用于最重要、研究最多的高能物理过程之一的复杂模拟 LHC 数据,pp → Z j → ℓ + ℓ − j,
丙酮酸脱氢酶B(PDHB)是丙酮酸脱氢酶复合物的重要组成部分,与改变肿瘤代谢和促进恶性肿瘤有关。然而,PDHB对肝细胞癌(HCC)代谢重编程的特定影响及其在肿瘤进展中的作用仍有待阐明。在我们的研究中,我们发现了HCC内PDHB表达的明显升高,与延迟的肿瘤分期,肿瘤分级升高和预后结局降低相关。PDHB过表达驱动体外和体内肿瘤的生长和转移。从机械上讲,PDHB通过与SLC2A1,GPI和PKM2的启动子区域结合,介导了代谢重编程,从而促进了糖酵解相关的基因转录,从而有助于HCC索拉非尼替尼耐药。另外,同肌固定会是PDHB的靶向抑制剂,并对HCC发挥抗肿瘤作用。在小鼠异种移植模型中,同肌苷和索拉非尼的组合比单独的索拉非尼表现出明显更好的作用。总而言之,我们的研究证实了PDHB为一种能够预测HCC肿瘤进展的致癌耐药性相关基因。PDHB和等肌苷可能是肝癌靶向和联合疗法的潜在途径。