空间探索的新时代的特点是一系列巨大的里程碑,这些里程碑扩大了人类成就的界限。SpaceX,Blue Origin和Virgin Galactic等私人公司在重新定义太空旅行的可能性方面发挥了关键作用。这些实体已经开创了可重复使用的火箭技术,大大降低了将有效载荷和人类推向太空的成本。SpaceX的Falcon 9火箭可以发射和登陆多次,从而使空间更具成本效益和可持续性。此外,国际空间站(ISS)证明了国际合作,代表了在低地球上建立可居住的哨所的全球努力。国际空间站不仅是科学研究的平台,而且还可以作为未来深空任务的垫脚石,从而促进了使地球生命受益的技术进步。火星已成为这个新时代的焦点。各种太空机构和私人公司正在努力工作,将船员的错误派往红色星球。NASA的毅力漫游者成功地降落在火星上,不仅在进行科学探索,而且还在测试未来人类任务的技术,例如从火星大气中产生氧气。埃隆·马斯克(Elon Musk)的SpaceX制定了一个大胆的计划,在火星上建立一个自我维持的殖民地,设想了人类成为多层次物种的未来。空间探索的新时代不仅限于我们的太阳系;它延伸到宇宙的最远。Starship是目前正在开发的完全可重复使用的航天器,旨在将大量乘客和货物运送到地球以外的目的地,彻底改变了行星际旅行。望远镜这样的望远镜望远镜为我们提供了遥远星系和星云的令人叹为观止的图像,扩大了我们的理解
已经部署。2014 年 1 月,印度空间研究组织成功使用国产低温发动机在 GSLV-D5 发射 GSAT-14 时。3)。印度空间研究组织建造了印度第一颗卫星阿亚巴塔 (Aryabhata),该卫星于 1975 年 4 月 19 日由苏联发射。它以数学家阿亚巴塔的名字命名。1980 年,罗希尼 (Rohini) 成为第一颗由印度制造的运载火箭 SLV-3 送入轨道的卫星。印度空间研究组织随后开发了另外两种火箭:用于将卫星发射到极地轨道的极地卫星运载火箭 (PSLV) 和用于放置卫星的地球同步卫星运载火箭 (GSLV)。4)。印度空间研究组织于 2008 年 10 月 22 日发射了一颗月球轨道器;Chandrayaan-1,以及一颗火星轨道器,该轨道器于 2014 年 9 月 24 日成功进入火星轨道,使印度成为第一个首次尝试成功的国家。未来计划包括载人航天、进一步的月球探索、行星际探测器和太阳航天器任务。2016 年 6 月 18 日,印度空间研究组织创下纪录,一次发射了 20 颗卫星,其中一颗是谷歌的卫星。2017 年 2 月 15 日,印度空间研究组织用一枚火箭 (PSLV-C37) 发射了 104 颗卫星,创造了世界纪录。尼赫鲁和他的亲密助手兼科学家维克拉姆·萨拉巴伊 (Vikram Sarabhai) 成立了印度空间研究组织,从而使印度的太空活动制度化。该组织由印度共和国总理直属的太空部管理。
Svarog Project是一项学生主导的计划,旨在使用太阳能航行到达Heliopause [1]。帆设置为被动稳定,与以前的星际任务不同,不需要重力助攻,从而使深空探索更加可行和灵活。已经进行了以前的可行性研究,证明了任务的潜力并突出了研究重点。已经开发了一种高保真轨道模型,以证明轨迹的可行性和研究初始条件。目前,正在实施科学机器学习[2],以研究对系统属性的最佳初始条件,参数和轨迹的敏感性。初始研究表明,逃逸轨迹对于质量与面积比为12 g m -2是可行的。鉴于反复的近距离传递给太阳,任务的持续时间以及其对太阳事件的敏感性,在任务期间理解和建模太空环境至关重要。到目前为止,已经进行了使用GRAS [3]与数据驱动的太阳能电位模型相结合的航天器接收的辐射剂量的初步模拟。使用多粒子模型的内部代码的结构模拟已与商业软件包进行了比较,并与真空室测试配对以进行验证。在Ikaros团队研究和分析[4]之后,我们现在已经开发了非二维分析,该分析将使帆动力学缩放以减少所需的模拟数量,并能够在重力影响下对帆行为进行实验验证。机械和电子设计以及原型制作与研究的努力并行进行。这些已经使部署方法和通信体系结构进行了测试。正在与飞行经过证明的旋转方法并行研究电动机控制的繁荣部署[5]。如果这些技术成功,SVAROG系统可以作为测试新技术和研究机会的低成本推动力,对行星际任务的越来越多以及促进了深空探索。
在过去十年中,地球磁层中的航天器测量到的静电电位高达数十 kV 量级。太空观测结果显示太阳系中的自然物体也存在巨大电位。静电放电可能对航天器造成物质损坏和操作干扰。尘埃等自然物体可能受到干扰,其运动受到电磁力的影响。太空中物体的电位由各种充电电流之间的平衡决定。最重要的是等离子体粒子的电荷转移、光电发射和二次电子发射,有时其他充电机制也会起作用。物体的电荷和运动以及局部磁场和电场都会影响电流。电介质表面可能具有表面电位梯度,这可以通过产生势垒来影响电流平衡。这些过程针对太阳系和星际空间中的物体进行了评估。预期的平衡电位范围从电离层的负几十分之一伏到安静磁层和行星际空间的正几伏。然而,在热等离子体(如受扰磁层)中,尤其是在阴影表面上,可能会出现较大的负电位。星际空间中的电位可以是正的也可以是负的,这取决于当地辐射场和等离子体的特性。在已测量过航天器电位的地区,结果通常与这些预期一致。偏差可以归因于偏置或介电表面的影响,或天线等大型结构中的磁感应效应。已经开展了深入的研究工作,以测量材料特性、研究充电和放电过程、将电流平衡建模为真实的航天器配置,并获取太空中的更多数据。已经使用被动方法(例如仔细选择表面材料)和主动方法(例如发射带电粒子束)进行了航天器电位控制实验。该评论最后对充电效应可能发挥重要作用的天体物理应用进行了调查。
航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
新闻稿2021年9月13日EURISA:为太空应用开发第一个紧凑型和具有成本效益的欧洲惯性测量单位(IMU),旨在开发欧洲紧凑,表现和成本效益的IMU,以确保欧洲对欧洲的非依赖性,以确保欧洲对空间的关键设备。由欧盟委员会作为Horizon H2020计划的一部分资助,3.3 M€项目汇集了4位欧洲太空生态系统的主要参与者 - 空中客车防御和太空,Eth Zurich,Eth Zurich,German Aerospace Center(DLR)和Ixblue - 并将运行3.5岁。截至今天,欧洲在紧凑,高性能和具有成本效益的IMU上没有其他选择,因此,许多欧盟太空任务取决于非欧洲的惯性测量单位(IMU),并依靠外国伙伴的商誉来采购这些关键组成部分。Eurisa的主要目的是提供IMU,其中包括登陆,漫游车导航和行星际巡航等任务的TRL的精心设计杂交算法。由ixblue领导的项目是建立在4个合作伙伴的广泛专业知识上的:参与诸如Insight和Lisa for Eth Zurich的主要太空任务; Callisto和Eagle项目的DLR和ixblue和空中客车防御和空间的Actrix陀螺仪系列。除了这个专有技术之外,将定制和组装不同合作伙伴的技术砖,以使未来的欧洲IMU在2024年准备就绪。Guillaume Lecamp指出:“基于过去和当前的发展以及使用资格有空的COTS电子产品,我们确保了具有成本效益的产品,并且是通往TRL 6成熟的安全途径。的确,合作伙伴会在该项目中获得强大而互补的能力,以取得成功:太空电子,惯性传感器,有关太空任务要求的知识,杂交算法,太空环境以及制造和质量。,由于项目合作伙伴的欧洲制造商和IMU的所有关键组成部分,Eurisa将为欧洲的独立性和空间中的主权做出贡献,以供未来的任务和探索。
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。
2017 年,近 300 颗立方体卫星被送入太空,此后 3 年,立方体卫星数量持续下降。虽然 2021 年创下了约 326 颗纳米卫星发射的新纪录,但过去 10 年发布的有关立方体卫星增长的大多数预测和预期都没有实现。本文试图回答原因,并根据计划的任务和历史趋势做出新的预测。本文的第一部分介绍了最新的纳米卫星和立方体卫星发射统计数据。在数据库的 3400 多个条目中,截至 2022 年 8 月 1 日,已发射了 2068 颗纳米卫星或 1893 颗立方体卫星。已发射立方体卫星的总估计质量仅为 ∼ 7428 千克(4952U Ö 1.5 千克),小于一批 60 颗 Starlink 航天器。第二部分重点关注飞越低地球轨道的纳米卫星子集,列出了 79 个从 MEO 到日心轨道的轨道任务,其中 15 个发射到太空。研究的第三部分收集了多个组织的小型卫星发射预测,并将其与历史结果进行了比较。讨论了出现分歧的原因。发射延迟是几年来的原因之一,但大部分增长应该来自商业立方体卫星星座,而几乎所有这些星座都尚未大规模出现或正在过渡到更大的卫星。这项工作的最后一部分为未来 6 年创建了新的立方体卫星发射预测。这是对作者在 2018 年初和 2020 年初的先前预测的更新。我们预测,从 2022 年初到 2027 年底将发射 2080 颗纳米卫星。在发射了第一颗纳米卫星并面临空间技术开发和空间商业模式的挑战后,大学和公司可能已经度过了一些早期的兴奋。然而,由于太空中仅有 4 颗行星际立方体卫星,发射选项正在迅速扩大,且还有许多可能的激动人心的技术尚待开发,纳米卫星的生产时代仍可能持续。
范围NASA Glenn Research Center一直在典型苛刻的空间环境中,特别是极端的温度暴露和广泛的热循环,对商业货架(COTS)电气,电子和机电(EEE)部分进行了可靠性研究和性能评估。在NASA电子零件和包装(NEPP)计划的支持下,这些努力已经跨越了几年。有时,NASA开发的零件和材料的性能评估也与其他NASA中心合作执行,包括GSFC,LARC,MSFC和JPL。测试文章包括半导体开关,电容器,振荡器,电压参考,灵活的打印电路板,传感器和DC/DC转换器,仅举几例。虽然此摘要对选定零件获得的测试结果提供了概述,但这些和其他COTS零件的详细发现发布在NASA NEPP网站上。实验研究主要集中在设备/电路暴露于高温和低温(有时超出其指定限制之外),热循环以及在极端温度极端的重新启动能力,以建立在功能上的基线,并确定这些设备在太空勘探任务中的适用性。这些发现被传播到任务计划人员和电路设计师,以便可以正确选择电子零件,并确定风险评估和缓解技术以在太空任务中使用此类设备。极端温度环境电路和未来NASA空间任务的系统涉及航天器,深空探头,行星轨道和着陆器以及在极端温度环境中需要可靠和高效的操作的表面探索仪器。例如,发射的行星际探针探索土星的环将经历大约-138C的温度。商业级电子零件通常指定为在0°C和70°C之间运行,指定工业级的半导体设备指定在-40°C和85°C之间运行,并指定在-55°C和125°C之间运行的军事级。由于严格的温度信封,用于空间使用的零件的评级不同,因此需要在可用EEE零件的范围内运行。
先进科学技术研究组织,日本横滨 基金会物理学研究中心 (FoPRC),意大利科森扎。 电子邮件:takaaki.mushya@gmail.com 通讯作者详细信息:Takaaki Musha;takaaki.mushya@gmail.com 摘要 已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。本文讨论了通过电重力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它只使用太阳能电池板产生的电能,卫星可以永久绕地球运行并在太阳附近的任何轨道上运行。 关键词:空间推进;卫星;电重力;比菲尔德-布朗效应 介绍 所有航天器都需要一种推进方法。已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。卫星首次发射到预定轨道需要使用常规液体或固体火箭发动机,并具备足够的推进力以克服地球大气层并达到稳定轨道所需的高速度。行星际航天器可能需要这种强大的常规火箭发动机,但也可以依靠功率较小但持续时间较长、ISP 较高的发动机,如离子推进器或霍尔效应推进器。卫星即使进入稳定轨道,也需要可靠的长时间推进方法才能保持功能。即使卫星在轨道上,它也会受到稀薄大气层的阻力和其他力的影响,这些力会随着时间的推移降低轨道。因此,卫星必须能够对其轨道进行微小修正以保持轨道,这称为轨道站保持 [1]。此外,卫星可能需要能够不时从一个轨道转移到另一个轨道 [2],能够保持相对于地球表面、太阳或其他感兴趣的天文物体的特定姿态 [3],并且由于部件故障或其他原因,甚至可能需要以安全和可控的方式脱离轨道。在大多数情况下,当卫星执行轨道调整的推进系统耗尽或无法再产生推进力时,卫星执行其设计任务的能力就结束了,其使用寿命也结束了。目前,卫星通常只使用较小版本的化学火箭发动机或电阻喷射火箭进行推进。有些卫星确实使用电动动量轮进行姿态控制,但由于运动部件的存在,这些动量轮容易发生故障,并且它们可以执行的校正范围有限。最近,卫星开始使用电力推进,例如离子推进器来保持位置并调整轨道,但这种推进器虽然是电力驱动的,他们的供应仍然有限