1. 飞掠航天器 2. 轨道器 3. 大气航天器 4. 着陆器 5. 探测车 6. 穿透器 7. 天文台航天器 8. 通信航天器 我们分别阐述这八个类别。 (另请参阅JPL公共网站,其中列出了过去、现在、未来和拟议的JPL机器人航天器任务的最新列表) 1.飞掠航天器 飞掠航天器进行太阳系探索的初始侦察阶段。它们沿着连续的太阳轨道或逃逸轨迹运行,永远不会被进入行星轨道。它们必须能够使用其仪器观察经过的目标。理想情况下,它们可以平移以补偿目标在光学仪器视野内的视运动。它们必须将数据下行链路到地球,并在其天线偏离地球点期间将数据存储在机上。它们必须能够承受长时间的行星际巡航。飞越航天器可能设计为使用推进器或反作用轮在 3 个轴上稳定,或连续旋转以保持稳定。飞越航天器类别的主要示例是旅行者 2 号,它与木星、土星、天王星和海王星系统进行了接触。飞越航天器的其他示例包括:
上下文。罗塞塔号航天器上的 OSIRIS 相机在彗星 67P/Churyumov-Gerasimenko (67P) 的彗发内测量的尘埃亮度相位曲线呈现出显著的 U 形。目的。我们的目标是将这些相位曲线与暂时模拟的尘埃样本的相位曲线进行比较,以评估可能导致这种形状的关键尘埃特性。方法。在实验室和微重力条件下,使用 PROGRA2 仪器对可能代表彗星尘埃颗粒的不同物理特性和成分的样本进行了光散射测量。结果。我们发现,最近开发的一系列行星际尘埃类似物的亮度相位曲线(用于拟合内黄道云的极化特性及其随太阳中心距离的变化)与 67P 的亮度相位曲线非常相似。关键的尘埃特性似乎与成分和孔隙度有关。结论。我们得出结论,67P 亮度相位曲线的形状与大量有机化合物(至少 50% 的质量)和蓬松聚集体(尺寸范围为 10 至 200 µ m)的存在有关。我们还证实了这颗木星族彗星的尘埃颗粒与内黄道云中的颗粒之间的相似性。
上下文。罗塞塔号航天器上的 OSIRIS 相机在彗星 67P/Churyumov-Gerasimenko (67P) 的彗发内测量的尘埃亮度相位曲线呈现出显著的 U 形。目的。我们的目标是将这些相位曲线与暂时模拟的尘埃样本的相位曲线进行比较,以评估可能导致这种形状的关键尘埃特性。方法。在实验室和微重力条件下,使用 PROGRA2 仪器对可能代表彗星尘埃颗粒的不同物理特性和成分的样本进行了光散射测量。结果。我们发现,最近开发的一系列行星际尘埃类似物的亮度相位曲线(用于拟合内黄道云的极化特性及其随太阳中心距离的变化)与 67P 的亮度相位曲线非常相似。关键的尘埃特性似乎与成分和孔隙度有关。结论。我们得出结论,67P 亮度相位曲线的形状与大量有机化合物(至少 50% 的质量)和蓬松聚集体(尺寸范围为 10 至 200 µ m)的存在有关。我们还证实了这颗木星族彗星的尘埃颗粒与内黄道云中的颗粒之间的相似性。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
在载人火星任务的背景下,描述了裂变碎片火箭发动机概念的电离辐射特性。这种推进系统利用悬浮在气凝胶基质中的微米级裂变燃料颗粒,可以在高功率密度(> kW/kg)下实现非常高的比冲量(> 10 6 s)。裂变芯位于电磁铁孔内,并位于外部中子减速剂材料内。低密度气凝胶可以对燃料颗粒进行辐射冷却,同时最大限度地减少与裂变碎片的碰撞损失,与以前的概念相比,可以更有效地利用裂变燃料产生推力。本文介绍了来自外部(例如银河宇宙射线)和内部(反应堆)源的宇航员机组人员的稳态电离辐射当量剂量的估计值。航天器设计包括一个离心概念,其中过境居住舱围绕航天器的重心旋转,为机组人员提供人工重力,并与核心分离。我们发现,裂变碎片推进系统与离心相结合可以缩短过境时间,降低等效辐射剂量,并降低长期暴露于微重力环境的风险。这种高比重脉冲推进系统将使其他载人快速过境、高 delta-V 行星际任务成为可能,其有效载荷质量分数远高于替代推进结构(化学和太阳能电力)。
1. 加州理工学院喷气推进实验室 简介: Gregory Allen 是加州理工学院喷气推进实验室的高级辐射效应工程师。 过去 20 年,他一直从事辐射效应领域的工作,专注于单粒子效应和技术融合。 Greg 是喷气推进实验室空间辐射中心的联合负责人,也是辐射效应组的组长。 摘要: 2021 年 4 月 19 日,在火星的耶泽罗陨石坑,Ingenuity 旋翼机在另一颗星球上进行了首次动力飞行,标志着行星际探索的一个里程碑。 它被设计为 NASA 火星 2020 任务的技术演示器和次要有效载荷,主要目的是证明在极稀薄的火星大气中实现动力飞行是可能的。 它并非用于运输,而是为了测试在火星上进行空中探索的概念。然而,火星机智号的成功展示了在火星上进行空中探索的潜力,为未来使用直升机和无人机在其他星球上进行科学探索、测绘和侦察的任务铺平了道路。我们庆祝机智号的成功,探索它实现这一目标的途径,并展望火星自主飞行的未来。
摘要:深空网络(也称为 DSN)是 NASA 的一个国际阵列,由巨型无线电天线组成。DSN 支持行星际航天器任务以及一些围绕地球旋转的任务。DSN 还提供射电天文学观测,以提高我们对更大宇宙中太阳系的了解。通常运行四十年或更长时间的深空网络 (DSN) 资产的升级或更换计划需要尽可能了解未来的潜在客户需求。本文介绍了规划人员用来发展这种理解的深空网络 (DSN) 方法。此外,还介绍了从该方法的应用中出现的一些关键未来任务趋势,以及这些趋势对 DSN 未来发展的影响。在 NASA 目前到 2030 年的计划中,这些趋势表明需要容纳三倍的通信链路,将下行链路速率升级到比现在高两个数量级,将上行链路速率提高大约四个数量级,并将端到端链路难度提高两到三个数量级。为了克服这些挑战,深空网络的能力和容量都需要扩大。在长途通话方面,很难超越美国宇航局的深空网络。它确实是世界上最大、最灵敏的科学电信系统。关键词:深空网络、深空网络、卫星、美国宇航局
∗ 钱继伟博士是新加坡国立大学东亚研究所高级研究员,刘伯建先生是该研究所研究助理。1 BBC,“北斗:中国发射最后一颗卫星挑战 GPS”,2020 年 6 月 23 日,BBC 新闻网站,网址为 https://www.bbc.com/news/business-53132957(2020 年 10 月 6 日访问)。2 Andrew Jones,“天问一号发射火星探测器,标志着中国行星际探索的曙光”,2020 年 7 月 23 日,太空新闻网站,网址为 https://spacenews.com/tianwen-1-launches-for-mars-marking-dawn-of-chinese-interplanetary-exploration/(2020 年 10 月 5 日访问)。3 John Agnew 和 Stuart Crobridge (2002)。掌握太空:霸权、领土与国际政治经济学。伦敦、纽约:劳特利奇。4 在2020年成功发射长征五号B火箭之前,中国被认为是航天技术竞争的第二梯队。参见人民画报,《中国载人航天工程迈向第三步 长征五号B火箭成功》,2020年8月11日,人民画报网,网址为http://www.rmhb.com.cn/yxsj/zttp/202008/t20200811_800217294.html(2020年11月1日访问)。
摘要:在本文中,我们在将区块链技术与物联网(IoT)和安全框架相结合时演示了创新的多个点。在智能城市环境中物联网设备网络的部署和使用产生了大量数据。这些数据是由多个来源拥有的,这些数据将独立系统用于数据收集,存储和使用会阻碍其价值的利用。区块链作为分布式分类帐,可用于解决用于数据收集和分发的通用系统的开发。智能合约可用于自动化此类网络的所有过程,同时,区块链和行星际文件系统(IPFS)通过匿名和分布式存储保护敏感数据。提议的应用程序,数据和服务的创新和开放的物联网区块链市场提出:(i)提供了以下框架,以便以虚拟货币的形式交换对象的资产(数据和服务); (ii)根据社会和商业环境定义动机激励措施,以使人类和智能对象进行互动。在M-SEC项目的背景下,通过桑坦德和富士泽之间的跨境试验进行了特定市场,从而验证了互操作性,效率和数据保护原则。
我们正处在一个前所未有的时代,科学和技术在太空探索方面有前所未有的合作机会,利用广泛的原位和非原位工具研究宇宙中的几乎所有目标。我们的研究所自豪地继承了捷克诺贝尔奖获得者雅罗斯拉夫·海洛夫斯基的杰出遗产,他开发了独特的极谱法,这是 20 世纪化学分析的基石之一。今天,空间科学和技术是领先的科学领域之一,就像海洛夫斯基时代的先进仪器分析一样。关于天体以及行星际和星际空间的化学和物理知识基础不断扩大,需要所有科学和技术领域的专家进行多学科参与。其中,物理化学和化学物理学占据着稳固的地位。当代太空探索必须由实验室科学、在良好控制条件下的实验、理论计算以及先进仪器和技术的开发来支持。我们的研究所在所有这些领域都积极做出贡献,而物理化学的应用是共同点。我们研究所的主要战略不是注重数量,而是开发独特的仪器、技术、科学方法和概念,以及促进空间工程和科学领域广泛开放的合作。