25 Mini XRD Bruker,德国 D8 Advanced CSIR 先进材料与工艺研究所 (AMPRI) 博帕尔 26 多用途 XRD Rigaku SmartLab 印度理工学院 (IIT) 甘地讷格尔中央仪器设施 27 Panalytical PXRD PANalytical PANalytical 印度科学研究所 (IISc) 班加罗尔固态与结构化学部门 28 Panalytical? XRD PANalitical 荷兰 X'Pert Powder 印度理工学院 (IIT) 坎普尔先进材料科学中心 29 粉末 X 射线衍射 (P- XRD) Bruker Bruker AXS D8 Focus 古吉拉特中央大学 甘地讷格尔中央仪器设备中心 30 粉末和薄膜 X 射线衍射 (XRD) Panalytical XPERT3 Powder 印度理工学院 (IIT) 坎普尔化学工程 31 粉末 X 射线衍射仪 Rigaku XRD SmartLab 印度理工学院 (IIT) 帕拉卡德中央仪器设备中心 32 粉末 X 射线衍射 (粉末 XRD) Bruker AXS D8 印度理工学院 (IIT) 鲁尔基研究所仪器中心 (IIC)
I.晶体结构和晶体衍射1课程摘要1练习9 1:某些晶体结构的描述9 2:单位质量质量晶体质量12 3:各种晶体结构的构造12 4:晶格行14 5A:晶格行和网状平面14 5B:晶格行和续线14 6:互动的距 8: Atomic planes and Miller indices: application to lithium 16 9: Packing 17 10a: Properties of the reciprocal lattice 20 10b: Distances between reticular planes 21 11: Angles between the reticular planes 22 12: Volume of reciprocal space 23 13: Reciprocal lattice of a face-centered cubic structure 23 14: Reciprocal lattice of body-centered and face-centered cubic structures 25 15: X射线衍射由一排相同的原子26 16:X射线衍射由有限长度的一排原子28 17:2d中的Bravais晶格:在石墨层中应用(Graphene)31 18a:Ewald构造和结构因子的结构和结构因子33 18b:tri-Atomic基础的结构因子; Ewald的结构在倾斜发生率(Ex。18a)37
978 同步光在材料和生命科学中的散射和衍射应用(物理讲义 TA Ezquerra Mari Cruz Garcia-Gutierrez Auror 354095967X Springer 2009 318
衍射现象 当波遇到一系列间距均匀的障碍物时就会发生衍射,这些障碍物 (1) 能够散射波,并且 (2) 其间距在大小上与波长相当。此外,衍射是两个或多个被障碍物散射的波之间建立特定相位关系的结果。考虑图 3.1 a W 中的波 1 和 2,它们具有相同的波长 (�) 并在点 O – O � 处同相。现在让我们假设这两个波都以某种方式散射,即它们穿过不同的路径。散射波之间的相位关系很重要,它将取决于路径长度的差异。当这个路径长度差是波长的整数倍时,就会出现一种可能性。如图 3.1 a W 所示,这些散射波(现在标记为 1 � 和 2 �)仍然同相。据说它们相互加强(或相互干扰);并且,当振幅相加时,就会产生图中右侧所示的波。这是衍射的一种表现,我们将衍射光束称为由大量相互加强的散射波组成的光束。散射波之间可能存在其他相位关系,但不会导致这种相互加强。另一个极端是图 3.1 b W 中所示的情况,其中散射后的路径长度差是半 w 的某个整数
使用安装在 J-PARC 材料与生命科学实验设施的单晶衍射仪 SENJU (BL18) 和超高分辨率粉末衍射仪 SuperHRPD (BL08) 收集飞行时间中子衍射数据。如图 1(a) 所示,在 MASnBr 3 的五个相中观察到的衍射图案彼此明显不同,表明晶体结构通过四个相变依次变化。该结果需要重新考虑 g、d 和 e 相的结构,其中 b - g 相和 d – e 相之间没有观察到明显的结构变化[1]。对于 MASnI 3 ,如先前报道的那样[2][3],识别出三个具有不同结构的相(图 1(b))。最低温相的结构仍然不确定,但 b 相和 g 相之间衍射图案的剧烈变化表明结构对称性从四方晶系到三斜晶系显著降低。立方a相单晶结构分析表明MA分子的质心位于立方晶胞中心之外,用最大熵法合成的分子核密度沿立方轴呈现各向异性分布。这些趋势在MASnBr 3 中表现得更为明显,表明X = Br晶体中有机-无机相互作用的影响更强。
摘要。几十年来,显微镜和各种形式的干涉仪一直用于通常大于光波长λ的物体的光学计量。然而,由于衍射极限,亚波长物体的计量被认为是不可能的。我们报告说,通过分析物体散射的相干光的衍射图案,使用深度学习分析,可以测量亚波长物体的物理尺寸,精度超过λ/800。使用633nm激光,我们表明可以以0.77nm的精度测量不透明屏幕中亚波长狭缝的宽度,这对电子束和离子束光刻的精度提出了挑战。该技术适用于集成计量和加工工具的智能制造应用中纳米尺寸的高速非接触式测量。
氧化锌薄膜在室温下通过电子束蒸发在玻璃基板上生长,然后在不同温度下在250至550 c的不同温度下退火压力600 mbar退火。薄膜的电气,光学和结构特性,例如电阻率,光透射率,带隙和晶粒尺寸,这是退火温度的函数。X射线衍射表明,最大强度峰对应于(002)在各种温度下退火的ZnoFILM的主要方向。最大宽度的全宽度,在退火处理后减少,这证明了晶体质量的改善。扫描电子显微镜图像表明,通过增加退火温度,晶粒尺寸变得更大,并且该结果与X射线衍射分析一致。由Elsevier Ltd.
θ 0 其中是斜入射角。一般来说,绕行相位全息图由许多散射体(像素)组成,每个散射体都可以实现所需的相位延迟。因此,由一系列错位的纳米结构形成超表面以实现真正的相位调制全息术。在我们的例子中,研究作为一种基本和未修饰的构建块的各向同性纳米结构,纯粹是为了验证空间频率正交性作为一个新的自由度。根据巴比涅原理 S1,S2,已知尺寸和形状的纳米孔和纳米盘可以看作是一对互补的构建块。除了前向散射强度外,互补孔径和不透明体的衍射图案非常相似。除了纳米制造的简易性和衍射效率之间的权衡之外,还相应地采用反射配置。
声波,536-546 衍射和模式转换信号,541-542 分布弹簧常数,539-541 与裂纹的相互作用,536-537 界面透射率,539,541 局部应力强度因子,543-546 通过透射和衍射信号接收,537-538 界面残余应力,542-543 剪切波信号,542 超声波穿过裂纹的传播,539-540 垂直于裂纹表面的波传播,538--541 艾里应力函数,313 合金,139,171 铝合金,121,270,528,583-597,640,642-643 施加与有效试样几何形状,227-228 基线传播数据,571-572 化学成分, 122,584 顺应性方法,587 恒定载荷振幅试验,569-570 裂纹扩展基线数据,428-430 速率变化,37-38 裂纹张开应力强度因子变化,37-38
图3。(a)从左到右的顶行:边缘SEM,能量色散光谱(EDS)分析,显示了TIO 2纳米分布的分布以及高指数平面化a 〜4.25 µm和H〜1.8 µm的高指数平面底物S的红色激光衍射模式。 (b)中排:平面底物u的边缘SEM和红色激光衍射模式(A〜16 µm,H〜4.1 µm)。请注意大型无特征中央和六角形散射模式。(c)A 〜15 µm和H〜7 µm的近距离商业MLA的光学图像,以及(d)平面化弥漫性随机结构(基板M)的光学图像; OLED均在所有这些PE上用TiO 2纳米颗粒的高指数像素层制造。