摘要:黑磷(BP)在电子和光电子应用方面表现出巨大的潜力,然而如何保持BP器件在整个温度范围内的稳定性能仍然是一个难题。本文展示了一种在原子层沉积AlN/SiO 2 /Si衬底上制备的新型BP场效应晶体管(FET)。电学测试结果表明,与传统SiO 2 /Si衬底上制备的BP FET相比,AlN衬底上的BP FET具有更优异的电学性能。在77至400 K的温度范围内,它表现出5 × 10 8 的大开关电流比、< 0.26 V/dec的低亚阈值摆幅和1071 cm 2 V −1 s −1的高归一化场效应载流子迁移率。然而,当温度升至400 K时,SiO 2 /Si衬底上的BP FET不再具有这些稳定的电学性能;相反,SiO 2 /Si 衬底上的 BP FET 的电性能却急剧下降。此外,为了从物理上了解 AlN 衬底上 BP FET 的稳定性能,进行了低频噪声分析,结果表明 AlN 薄膜
摘要。将选择性湿法蚀刻技术应用于商用(2 ̅ 01)β-Ga 2 O 3 单晶衬底。一些蚀刻配方使我们能够在衬底表面上显示出尖锐的蚀刻坑。在交付的样品中研究了蚀刻坑的几何形状、方向和密度。对蚀刻坑相互位置的观察表明,加热后可能形成小角度晶界。将选择性湿法蚀刻技术应用于商用(2 ̅ 01)β-Ga 2 O 3 单晶衬底。一些蚀刻配方使我们能够在衬底表面上显示出尖锐的蚀刻坑。在交付的样品中研究了蚀刻坑的几何形状、方向和密度。对蚀刻坑相互位置的观察表明,加热后可能形成小角度晶界。关键词:选择性湿法蚀刻,β-Ga 2 O 3,氧化镓,半导体,晶体衬底,小角度晶界
当然,GaN 技术的功率能力通常与 LNA 单元应用关系不大,但可以利用这些特性简化前端的设计。GaN 外延可以在碳化硅 (SiC) 和硅 (Si) 衬底上生长。SiC 具有出色的热行为,可大大缓解散热问题。然而,考虑到航天级 SiC 衬底供应商数量有限,它相当昂贵,并且可用于半径较小的晶圆。另一方面,使用 Si 衬底虽然在热行为和 RF 损耗方面有所不利,但与 SiC 相比,制造成本更低,这是大批量生产的一个重要方面:此外,Si 衬底将来应该允许在同一芯片上集成 RF 和数字子系统
这是作者的同行评审并被接受的手稿。但是,一旦编辑和排版完成,记录的在线版本将与此版本不同。
本文对在独立衬底上生长的 GaN 外延层上的 Ni 肖特基势垒进行了表征。首先,通过对裸材料进行透射电子显微镜 (TEM) 图像和导电原子力显微镜 (C-AFM) 的纳米级电学分析,可以看到晶体中的结构缺陷以及电流传导的局部不均匀性。在外延层上制造的 Ni/GaN 垂直肖特基二极管的正向电流-电压 (IV) 特性给出的肖特基势垒高度平均值为 0.79 eV,理想因子为 1.14。对一组二极管的统计分析,结合温度依赖性测量,证实了在该材料中形成了非均质肖特基势垒。从 Φ B 与 n 的关系图中可以估算出接近 0.9 eV 的理想均质势垒,与通过电容-电压 (C – V) 分析推断出的势垒相似。通过 C-AFM 获得的局部 IV 曲线显示了电流传导开始点的不均匀分布,这又类似于在宏观肖特基二极管中观察到的电流传导开始点。最后,在不同温度下获得了在无缺陷区域制造的二极管的反向特性,并通过热电子场发射 (TFE) 模型描述了其行为。
2 法政大学 关键词:GaN-on-GaN、肖特基势垒二极管、均匀性、光致发光、功率器件 摘要 为了大规模生产 GaN-on-GaN 垂直功率器件,n 漂移层在 10 15 cm 3 范围内的净施主浓度 ND NA 的晶圆级均匀性是一个重要因素,因为它决定了击穿电压 VB 。在本研究中,我们通过控制 GaN 衬底的偏角展示了 GaN 肖特基势垒二极管晶圆级均匀性的改善。通过 MOVPE 在具有各种偏角和偏差的独立 GaN 衬底上生长外延结构。使用电容电压测量(C V)、光致发光(PL)和二次离子质谱(SIMS)仔细分析了 ND NA 的变化。与碳有关的NA变化导致了NDNA的不均匀性,而这与晶圆的衬底偏角有关。通过最小化偏角的变化可以提高NDNA的均匀性。引言在GaN衬底上制造的垂直结构GaN功率开关器件对于高效功率转换系统很有前景,因为这些器件提供极低的导通电阻(R on)和高击穿电压(VB)[1-3]。减少对器件成品率和可靠性致命的致命缺陷是一个重要问题。GaN-on-GaN二极管初始故障机理已有报道[4],其中具有外延坑的二极管在非常低的反向电压下表现出严重击穿。此外,最近有报道称表面粗糙度会影响可靠性[5]。在使用金属有机 (MO) 源引入碳 (C) 杂质时,n 漂移层中的净施主浓度必须控制在 10 15 cm3 范围内才能获得高 VB [6]。通过低施主含量,可以在负偏置条件下抑制 pn 或肖特基界面处的峰值电场 [7, 8]。然而,关于垂直 GaN-on-GaN 器件中净施主浓度的晶圆级均匀性的报道很少。
近年来,氮化镓 (GaN) 基高电子迁移率晶体管 (HEMT) 因其在降低开关损耗、维持高击穿电压以及保持高温稳定性方面所表现出的卓越性能,其商业化进程不断加快 [1,2]。大尺寸 Si 衬底上 GaN 外延生长技术的进步降低了生产成本。同时,Si 上的 HEMT 器件可以轻松集成到现有的 Si 铸造厂中 [4-6]。上述优势使 GaN 基 HEMT 器件更接近大众市场应用。阻挡层是 HEMT 器件中的关键元件之一,它决定了导电通道的电阻。AlGaN 是最常用的阻挡材料。在 AlGaN / GaN 界面区域形成的二维电子气 (2DEG) 表现出良好的稳定性、低的薄层电阻、高的载流子密度和高的电子迁移率 [7,8]。由于在 AlN / GaN 界面区域形成了更高的 2DEG 密度,AlN 作为阻挡层材料也引起了人们的关注 [9]。据报道,薄层电阻 (Rs) 值低至 128 Ω/sq,2DEG 密度为 3.21 × 10 13 / cm 2 [10]。此外,在 AlN 系统中可以避免合金散射,从而提高 2DEG 霍尔迁移率 [11,12]。已经证明了基于 AlN 阻挡层的 HEMT 器件具有低栅极漏电和高 I on / I off 比 [13]。表 1 总结了最近对具有最佳 Rs 性能的 AlN / GaN 异质结构的研究。然而,由于 AlN 与 GaN 沟道层的晶格失配较大 (2.5%),因此 AlN 的弛豫是一个主要挑战。氮化硅 (SiN x ) 帽层已被用作表面钝化层,以避免/减少 AlN 弛豫 [ 14 ] 。然而,钝化帽层的成分和厚度对抑制弛豫的影响很少被研究。在本文中,我们报告了包含原位生长的 GaN 和/或 SiN x 帽层的 AlN/GaN 异质结构的长期 2DEG 稳定性。
在集成电路制造过程中,晶圆表面状态及洁净度是影响晶圆良率和器件质量与可靠性的最重要因素之一,化学机械抛光 ( CMP )、湿法清洗、刻蚀、电化学沉积(电镀)等表面技术扮演重要的作用。公司围绕液体与固体衬底表面的微观处理 技术和高端化学品配方核心技术,专注于芯片制造过程中工艺与材料的最佳解决方案,成功搭建了 “ 化学机械抛光液 - 全品类 产品矩阵 ” 、 “ 功能性湿电子化学品 - 领先技术节点多产品线布局 ” 、 “ 电镀液及其添加剂 - 强化及提升电镀高端产品系列战略供 应 ” 三大核心技术平台。