被动防火 (PFP) 策略在确保高层建筑的安全性和可持续性方面发挥着关键作用,特别是在人口密集的城市环境中。本综述探讨了 PFP 系统在减轻火灾危险的同时解决其对环境和建筑影响的有效性。该研究评估了当代 PFP 材料和技术,研究了它们与高层建筑的整合,以增强防火性能并最大限度地降低风险。此外,本文还研究了 PFP 策略的可持续性,重点关注材料生命周期、能源效率以及与城市环境政策的一致性。讨论了关键挑战,包括实施障碍和与现代建筑趋势的兼容性。通过对案例研究和专家意见的比较分析,本综述强调了推进 PFP 系统的最佳实践和机会。研究结果强调需要创新、可持续的方法和强有力的监管框架来优化消防安全,同时促进城市的复原力。提出了指导未来发展的建议,确保 PFP 策略满足高层建筑安全性和可持续性的双重目标。
美国国家航空航天局 (NASA)、Redwire Space 和特百惠品牌公司 (Tupperware) 联合开发了一种改进的国际空间站 (ISS) 植物种植系统。自 2014 年以来,国际空间站上的宇航员农民一直在蔬菜生产系统(也称为“Veggie”设施)内种植各种多叶蔬菜和五颜六色的鲜花。然而,NASA 一直在寻求改进现有技术,同时减少对机组人员时间等资源的需求。为了减少宇航员必须给太空中生长的植物浇水的频率,霍华德·莱文博士和他的同事在美国宇航局肯尼迪航天中心 (KSC) 开始探索 Veggie 中用于支撑植物根部的组件的新设计概念,即所谓的“植物枕头”。KSC 的研究产生了一种被称为 PONDS 的半水培设计概念。著名厨房和家居用品品牌 Tupperware 和 Redwire 合作进一步开发了这一概念,并制造了适合太空飞行的 PONDS 植物生长装置,供国际空间站使用。Tupperware 正在利用其在可制造性设计、注塑成型和食品安全建筑材料方面的深厚知识和长期成功经验,打造出一种利用毛细力和不寻常的几何形状来取代重力的系统。最终的产品有望为在太空中生长的植物提供与陆地植物功能几乎相同的生长环境。
摘要:合适的光电集成平台能够实现芯片级的众多应用系统,在快速增长的市场中备受期待。我们报告了一种基于硅基氮化镓的光子集成平台,并展示了基于该平台的光子集成芯片,包括光源、调制器、光电二极管 (PD)、波导和 Y 分支分路器。光源、调制器和 PD 采用相同的多量子阱 (MQW) 二极管结构,不会遇到其他光子集成方法面临的不兼容问题。波导结构 MQW 电吸收调制器具有明显的间接光调制能力,其吸收系数随施加的偏置电压而变化。结果成功验证了使用峰值发射波长为 386 nm 的近紫外光进行数据传输和处理。所提出的完全主动 - 被动方法具有简单的制造和低成本,为下一代光子集成提供了新的前景。
................................................ . ……………………………… ...................................................... 39
�� ... �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ��������������������������������������������������������������������� ������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������ �������������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������
•峰Q因子> 20 @〜100MHz•峰电感密度〜300NH/mm2•L/RDC> 200NH/RDC> 100NH•100NH•L/RDC为L〜10NH的120NH/ω为120NH/ω•当前密度超过12A/mm2的速度超过1.5A的均超过12A/mm2•饱和度<3 pertrivation•饱和量均超过1.5a• •开发中的其他设备:•变压器,改进的电感器设计
摘要:现在,为了使建筑物正常运转,必须限制建筑物对传统能源的使用。建筑物在世界各地消耗大量能源。由于建筑物具有巨大的节能潜力,被动设计标准受到了广泛关注。被动设计方法可最大限度地减少能源消耗,同时最大限度地利用可再生能源,这被广泛认为是实现低能耗和可持续未来的最重要途径,尤其是在建筑行业。通过管理建筑物外部的热量损失和热量增加,被动结构可以实现最低的能源需求。因此,在冬季和夏季,几乎不需要能源投入,在高峰温度期间,只需极少的能源投入,即可保持热舒适度。在建筑行业使用被动技术可能是提高建筑能源效率的潜在方法。有多种被动设计解决方案可以最大限度地减少建筑物的能源负担,例如利用自然资源和考虑气候,尤其是在规划供暖、制冷、照明和通风时。它减少了在结构内实现舒适度所需的额外能源。
许多观察人士希望看到进入可持续投资领域的被动管理者能够更加致力于改善企业 ESG 实践。代理投票记录特别关注的是最大的指数基金管理公司——贝莱德、先锋集团和道富银行,它们也被称为“三巨头”。它们共控制着约 15 万亿美元的管理资产,持有约 80% 的指数资产。4 贝莱德和道富银行各自拥有多只 ESG 基金,先锋集团拥有一只。这三巨头因几乎总是投票支持管理层并反对 ESG 股东决议而受到批评。5 鉴于它们所持股份的规模,它们的支持往往是股东决议通过的关键。然而,形势正在开始改变。2020 年,贝莱德和道富银行