几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学(GA)建模技术假设表面相对于感兴趣的波长较大。对于给定场景,从业者通常会创建一个具有大而平坦表面的 3D 模型,以满足很宽频率范围内的假设。这种几何近似会导致模拟声场的空间分布出现误差,因为会影响反射和散射行为的几何细节被忽略了。为了补偿近似值,建模者通常会估算表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学(GA)建模技术假设表面相对于感兴趣的波长较大。对于给定场景,从业者通常会创建一个具有大而平坦表面的 3D 模型,以满足很宽频率范围内的假设。这种几何近似会导致模拟声场的空间分布出现误差,因为会影响反射和散射行为的几何细节被忽略了。为了补偿近似值,建模者通常会估算表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学(GA)建模技术假设表面相对于感兴趣的波长较大。对于给定场景,从业者通常会创建一个具有大而平坦表面的 3D 模型,以满足很宽频率范围内的假设。这种几何近似会导致模拟声场的空间分布出现误差,因为会影响反射和散射行为的几何细节被忽略了。为了补偿近似值,建模者通常会估算表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 - GA - 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的单个 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现错误,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、波长相关的变化。一种更确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 - GA - 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的单个 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现错误,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、波长相关的变化。一种更确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 - GA - 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的单个 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现错误,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、波长相关的变化。一种更确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
抽象运动传感是慢性疾病管理中的尖端领域。抑郁症是慢性疾病的普遍并发症,在这些研究中被忽略了。我们利用医学文献使用运动传感器信号来认可抑郁预测。为了保护这一高风险决策,我们开发了一个可解释的深度学习模型:时间原型网络(TEMPPNET)。由于传感器信号的时间特征和抑郁症的渐进性,Temppnet通过捕获抑郁症的时间症状进展来创新地修饰现有的原型学习模型。我们的经验结果表明,temppnet在预测抑郁症方面的表现优于状态模型。我们还通过可视化抑郁的时间进展及其在行走传感器信号中检测到的相应症状来解释我们的预测。我们通过基于时间症状进展的原型网络有助于数据科学方法。患者,医生和护理人员可以在移动设备上使用我们的模型实时进入患者的抑郁症风险。
自1992年里约会议以来,可持续性已成为人类发展的核心,强调了健康的生态系统和生物多样性在繁荣的社会中的关键作用。由2030年议程和可持续发展目标加强了可持续发展的概念,突出了气候变化和生物多样性损失带来的风险,加剧了它们在金融系统中的整合不足。开发中对环境有害的做法常常无法说明,而经济友好方法的好处在财务分析中被忽略了,从而导致决策忽略了长期生态系统和资源可持续性。为解决这些问题,促进绿色过渡,基于自然的解决方案,零零目标和可持续金融等的改革正在追求减轻环境影响并支持可持续发展。但是,这些无数和增殖的方法仍然与努力实现或促进其实施的财务逻辑和工具一样多样化和多样化。在基于气候和生物多样性的财务定义和实用性上持续分歧,尤其是当辩论在各自的各方(COP)的辩论中,我们需要避免对政策框架的进一步分裂和结晶,以最佳地解决气候,自然,自然,自然,