碳纤维增强环氧树脂,408 CARLOS,395 铸铁,567 球墨铸铁,215 CFRP,408 分类规则,535 冷膨胀,171 复杂应力场,335 复合方法,521 压缩,278 压缩欠载,154 等幅,24 约束,232,278 角缺口,81 相关因子,567 试样,171 裂纹闭合,154,215,232,278,299,320,482 塑性诱导,453 裂纹前沿不相容性,299 裂纹萌生,186,492 裂纹扩展速率,482
摘要。这项研究的目的是开发创新的损害响应性细菌基于细菌的自我修复纤维(以下称为生物纤维),可以将其掺入混凝土中以同时启用两个功能:(1)裂纹桥接功能以控制裂纹生长和(2)发生裂纹时发生裂纹愈合功能的裂纹功能。生物纤维由承载核心纤维,含细菌水凝胶的鞘和外部不渗透应变反应性壳涂层组成。即时浸泡制造过程与多个含有含细菌的,亲水性的前聚合物和交联试剂的储层一起使用,以开发生物纤维。亚硫酸钠用作前聚合物,通过核纤维上的离子交联产生钙藻酸盐水凝胶。在水凝胶中掺入了脂肪菌的休眠细菌(孢子)作为自我修复剂。然后,将不可渗透的聚合物涂层应用于水凝胶涂层的核纤维。使用聚苯乙烯和聚乳酸的聚合物混合物制造了不可渗透的应变反应性壳涂层材料。在这项研究中,高钙钙酸钙的高肿胀能力提供了微生物诱导的碳酸钙沉淀(MICP)化学途径所需的水。应变反应不足的涂层在混凝土铸造过程中提供了足够的柔韧性,以保护孢子和藻酸盐,并在破裂和足够的应力应变行为之前,以在发生裂缝时赋予损害反应性以激活MICP。研究了开发的生物纤维的行为,水凝胶的肿胀能力,壳涂层的不渗透性,孢子铸造的生存能力和MICP活性。
裂缝是在各种人造结构(例如人行道,桥梁,核电站壁和隧道天花板)上观察到的常见问题。发生结构元素分为不同的碎片时,发生裂纹,代表当混凝土承受超出其拉伸能力的力时缓解应力的机制[1]。这是一种恶化过程的症状,可以削弱混凝土或使其承受过度的压力,从而导致其失去完整性[2]。发生裂缝时,垂直于裂缝的拉伸应力消除了[3]。由于混凝土的异质材料结构和脆性行为,人们广泛认为,裂纹最终会在结构的寿命中出现。建筑代码明确承认这一点,以确保尽管形成了破裂,但结构可以忍受预定的服务寿命的负载。混凝土裂纹会导致严重的后果,例如降低强度和刚度,降低了美学,耐用性较短和防水损害[4]。由于裂缝而导致的刚度丧失会导致结构元素的其他变形和位移。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域。区域 II 通常被称为 Paris 区域,通常用单指数的幂律关系建模。区域 I 和 III 分别位于 FCGR 曲线的起点和终点,通常用渐近关系建模。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应区域 I - III 中 FCGR 斜率的变化,在 Paris 方程中引入了数学枢轴点。存在枢轴点的幂律行为使得能够直接拟合裂纹长度与循环数 (a-N) 曲线,以获得 FCGR 与 ΔK 的关系。这种新方法适用于小而长的裂纹扩展曲线,并能得到精确的多线性 FCGR 曲线,适合重建测得的 a-N 曲线。该方法随后应用于 i) 不同的合金,以显示 FCGR 曲线因合金成分和热处理变化而产生的局部变化,ii) 自然增加微观结构小裂纹的 Δ K 测试,以获得准确的小裂纹 FCGR 数据。与准确的长裂纹数据的比较表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,从而导致明显的偏移
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
摘要简介:饮用水的微生物污染,特别是诸如大肠杆菌O157:H7之类的病原体是全世界的一个重大公共卫生问题,尤其是在获得加沙地带(Gaza Strip)等清洁水的地区。然而,很少有研究量化了与大肠杆菌O157:H7污染相关的疾病负担。目的:本研究旨在进行全面的定量微生物风险评估,以估计加沙饮用水中大肠杆菌O157:H7归因于大肠杆菌的年度感染风险和疾病负担。方法:应用定量微生物风险评估技术的典型四个步骤 - 危险性识别,暴露评估,剂量反应分析和风险表征 - 该研究评估了与大肠杆菌O157:H7 CONIMATION相关的微生物风险。收集了来自加沙各种来源的总共1317个水样,并分析了大肠杆菌O157:H7的存在。使用Microsoft Exceltm和@RiskTM软件,构建了定量微生物风险评估模型,以量化与大肠杆菌O157:H7污染相关的感染风险。蒙特卡洛模拟技术被用来评估围绕输入变量的不确定性,并对感染风险和疾病负担产生概率估计。结果:对水样品的分析显示,在6.9%的样品中,大肠杆菌O157:H7的存在分别为1.97、9.74和112 mpn/100 mL,在6.9%的样品中存在。风险模型估计每年每年3.21×10-01的中位感染风险,中位疾病负担为3.21×10-01每年每年的残疾调整寿命年度,大大超过了WHO设定的可接受的阈值。结论:这些发现强调了迫切需要采取积极的策略来减轻与加沙的水传播病原体相关的公共卫生风险。
摘要 金属梁广泛用于汽车行业和机械部件。它们的一些应用包括内燃机的连杆、轴、车轴和齿轮、桥梁结构构件以及机器部件。它们中的大多数在其使用寿命内都会经历各种负载条件,这些负载条件可能会引发裂纹并导致裂纹扩展。这些力可能是拉伸、压缩、内部压力、弯曲或所有这些力的任何组合。裂纹扩展的监测和建模对于机器和结构的稳定性和安全性是必不可少的。基于有限元的二维裂纹扩展模拟器软件 Ansys14.0 用于二维梁中的扩展。在铝梁上进行四点弯曲试验实验并观察裂纹扩展行为。比较了这两个观察结果,即来自 Ansys 和实验的结果。在这项研究中,我们尝试使用指数模型在单边缺口 (SEN) 裂纹梁中开发一种故障预测方法。将预测结果与实验裂纹扩展数据进行了比较。观察结果表明,模型得到的结果与实验数据高度一致。关键词:- SEN
便携式 TFM 相控阵超声波仪器的开发为一系列工厂部件的裂纹检测和定量分析开辟了新阶段。使用结合了多个 ASCAN 数据集和连续精细扫描角度的全聚焦图像来可视化和定量裂纹。因此,可以同时从多个角度检测裂纹面。将这种独特的能力与窄聚焦光束相结合,可以提高背散射信号的信噪比,并识别反射和衍射的超声波响应。对于任何斜扫描要求,当缺陷传播方向不利于标准 UT 光束时,TFM 是首选的超声波 (UT) 技术。
摘要 目的. 将穿透性神经探针插入大脑对于神经科学的发展至关重要,但它涉及各种固有风险。原型探针通常插入水凝胶基大脑模型中,并分析其机械响应以了解体内植入期间的插入力学。然而,人们对神经探针在水凝胶大脑模型中插入动力学的潜在机制,特别是开裂现象,仍了解不足。这种知识差距导致在将模型研究获得的结果与在体内条件下观察到的结果进行比较时出现误解和差异。本研究旨在阐明探针的锐度和尺寸对探针插入水凝胶模型时出现的开裂机制和插入动力学的影响。方法. 系统地研究了由尖端角度、宽度和厚度定义的不同柄形状的假探针的插入。透明水凝胶中插入引起的裂纹用不混溶染料加重,通过原位成像跟踪,并记录相应的插入力。开发了三维有限元分析模型来获得探针尖端和幻像之间的接触应力。主要结果。研究结果揭示了一种双重模式:对于尖锐、细长的探针,由于与插入方向一致的直裂纹不断扩展,插入力在插入过程中始终保持在较低水平。相反,钝的、厚的探针会产生很大的力,并且随着插入深度的增加而迅速增加,这主要是由于形成了具有锥形裂纹表面的分支裂纹,以及随后的内部压缩。这种解释挑战了传统的理解,即忽视了开裂模式的差异,并将增加的摩擦力视为导致更高插入力的唯一因素。通过实验确定了区分直裂纹和分支裂纹的关键探针锐度因素,并从三维有限元分析中得出了两种开裂模式之间转变的初步解释。意义。本研究首次提出了神经探针插入水凝胶脑模型时两种不同开裂模式的机制。建立了开裂模式与插入力动力学之间的相关性以及探针锐度的影响,通过模型研究为神经探针的设计提供了见解,并为未来研究探针植入过程中脑组织开裂现象提供了参考。