在恒幅试验条件下,金属和合金的疲劳裂纹扩展 (FCG) 行为通常用裂纹扩展速率 da/dN 与应力强度因子范围� K 之间的关系来描述。图 1 示意性地显示了速率 da/dN 与� K 的典型对数-对数图,该图具有 S 形,可分为三个区域 [1-4]。区域 I 是近阈值区域,其中曲线变得陡峭并似乎接近渐近线� K th ,即下限� K 值,低于该值预计不会发生裂纹扩展。区域 II(中间区域)对应于稳定的宏观裂纹扩展。巴黎幂律 [5] 是一种经验关系,在对数-对数拟合中显示一条直线,是中等裂纹扩展速率(10 -8 至 10 -6 m/循环)此区域中疲劳的基本模型。区域 III 与最终失效前的快速裂纹扩展有关,主要受 K c 控制,即材料和厚度的断裂韧性。长期以来,人们观察到,对于固定的 � K ,da/dN 受应力循环不对称性的强烈影响,通常以载荷比 R 表示 [6-8]。发现阈值应力强度值 (� K th ) 取决于 R
本文主要研究循环波形、频率 (f)、载荷水平和微观结构对 da/dN 与 ΔK 对数-对数图中巴黎地区现代正火轧制 (NR) 和热机械控制工艺 (TMCP) 铁素体-珠光体钢的腐蚀疲劳裂纹扩展速率 (CFCGR) 的敏感性。在频率为 0.2 Hz、0.3 Hz 和 0.5 Hz 以及应力比为 0.1 的情况下使用恒幅正弦波 (si) 和梯形波形(本文中通常称为保持时间 (h-t))。还比较了海水 (SW) 中 si 和 h-t 下 S355 TMCP 钢中的裂纹路径。还讨论了微观结构在延缓或加速 SW 中疲劳裂纹扩展中的作用。实验结果表明,在所有检查的载荷水平和频率下,与 si 相对应的 CFCGR 都高于 h-t 的 CFCGR。观察发现,f 和疲劳载荷水平的降低会增加 h-t 的 CFCGR,但对 si 几乎没有影响。通常,0.2–0.5 Hz 范围内的 f 影响很小;对于给定的 f,载荷的增加会导致 CFCGR 降低,在巴黎地区 (PR) 中,对于 SW 中的 si 和 h-t 都是如此。在 si 和 h-t 下,TMCP 钢(例如 S355G8 + M、S355G10 + M)的 CFCGR 低于正火钢(例如 S355J2 + N)。对腐蚀疲劳试样断裂表面的冶金分析表明,主活性裂纹尖端钝化过程是控制的主要因素
假设线性弹性断裂力学,无论物体的几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展测试的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹比 C(T) 试样中的裂纹扩展得更快。这些观察到的差异已经过研究和量化。对于疲劳裂纹扩展测试,在 R = 0 的脉动拉伸下加载的破裂 Kb 试样的裂纹扩展速度是 C(T) 试样中裂纹的 3.6 倍,在所有测试温度和材料 Ti-64、Ti-6242 和 IN-718 上取平均值。使用锻造的 Ti-64 和 IN-718 制成的 C(T) 样品进行了新的疲劳裂纹扩展测试,并与锻件制成的 Kb 样品的疲劳裂纹扩展率进行了比较。发现锻件制成的 Kb 和 C(T) 样品之间的疲劳裂纹扩展率差异非常小。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域,区域 I 和 III 的斜率较陡,区域 II 的斜率适中,这通常称为巴黎制度。然而,文献中有许多例子表明区域 II 的斜率发生了变化。一些研究人员假设区域 I 和 III 呈线性行为,并导致对整个 FCGR 曲线的多线性描述。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应多线性 FCGR 曲线的变化,在 FCGR 方程中引入了数学枢轴点,这使得可以直接拟合裂纹长度与循环数曲线以获得 FCGR。能够拟合区域 I 中扩展的裂纹的小裂纹和长裂纹扩展曲线,证实了区域 I 裂纹扩展速率受幂律行为支配。 FCGR 结果表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,无论是小裂纹还是长裂纹。这导致过渡时 ΔK 明显偏移,并指出不均匀采样是小裂纹阈值较低的原因。精确的小裂纹扩展速率测量与长裂纹扩展速率测量相结合,可根据初始不连续尺寸计算疲劳寿命,这与光滑样品的实验获得的疲劳寿命结果相对应。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域,区域 I 和 III 的斜率较陡,区域 II 的斜率适中,这通常称为巴黎制度。然而,文献中有许多例子表明区域 II 的斜率发生了变化。一些研究人员假设区域 I 和 III 呈线性行为,并导致对整个 FCGR 曲线的多线性描述。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应多线性 FCGR 曲线的变化,在 FCGR 方程中引入了数学枢轴点,这使得可以直接拟合裂纹长度与循环数曲线以获得 FCGR。能够拟合区域 I 中扩展的裂纹的小裂纹和长裂纹扩展曲线,证实了区域 I 裂纹扩展速率受幂律行为支配。 FCGR 结果表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,无论是小裂纹还是长裂纹。这导致过渡时 ΔK 明显偏移,并指出不均匀采样是小裂纹阈值较低的原因。精确的小裂纹扩展速率测量与长裂纹扩展速率测量相结合,可根据初始不连续尺寸计算疲劳寿命,这与光滑样品的实验获得的疲劳寿命结果相对应。
量化疲劳裂纹扩展对于断裂关键工程部件和结构的损伤容限评估至关重要。疲劳裂纹扩展表征历史上的第一个重大事件是使用应力强度因子范围 D K 来关联疲劳裂纹扩展速率,由 Paris 等人 1 基于三项独立研究得出。Rice 2 在连续力学框架内进一步合理化了这种方法,认为疲劳裂纹扩展速率数据可能与应力强度因子范围相关。此后,人们普遍认为,在小规模屈服 (SSY) 条件下的大多数工程应用中,使用弹性应力强度因子范围 D K 就足够了,尽管大约在同一时间人们也认识到了载荷比 R 的作用,3
假设线性弹性断裂力学,无论机体几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展试验的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹扩展速度快于 C(T) 试样中的裂纹。已经研究并量化了这些观察到的差异。对于疲劳裂纹扩展试验,在 R = 0 的脉动拉伸下加载的开裂 Kb 试样的裂纹扩展速度比 C(T) 试样中的裂纹快 3.6 倍,这是在所有试验温度下和材料 Ti-64、Ti-6242 和 IN-718 的平均值。已经使用锻造的 Ti-64 和 IN-718 制成的 C(T) 试样进行了新的疲劳裂纹扩展试验,并将其与锻件制成的 Kb 试样的疲劳裂纹扩展速度进行了比较。发现锻件制成的 Kb 和 C(T) 试样的疲劳裂纹扩展速率差异非常小。
Elber 在 70 年代早期发现疲劳裂纹可以在拉伸载荷下闭合,并假设疲劳裂纹扩展 (FCG) 将由 D K eff = K max � K op 控制,其中 K max 和 K op 分别是应力强度因子的最大值和开口值。该假设可以合理化在使用载荷下观察到的许多瞬态效应,但它无法解释许多其他效应,如在高 R = K min / K max 下过载后 FCG 的延迟或停止,当 K min > K op 时;在高度可变的 D K eff 下以恒定速率进行的 FCG;在给定 R 下停止的裂纹可以在较低的 R 下重新启动生长而不改变其 D K eff;或 FCG 在惰性环境中对 R 不敏感。尽管如此,基于 D K eff 思想的带材屈服模型 (SYM) 比基于任何其他原理的替代模型更常用于 FCG 寿命预测。为了验证 SYM 是否确实本质上更好,它们的力学原理用于预测 FCG 速率,这既基于 Elber 的想法,也基于另一种观点,即 FCG 是由于裂纹尖端前方的损伤积累造成的,这不需要 D K eff 假设或任意数据拟合参数。尽管基于相互冲突的原理,但这两种模型都可以很好地再现准恒定 D K 载荷下获得的 FCG 数据,这是一个有点令人惊讶的结果,值得仔细分析。� 2017 Elsevier Ltd. 保留所有权利。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。