摘要。这项研究通过微波辅助覆层和15%的粒子混合物在SS-304底物上提出了一种革命性的方法来增强表面增强。进行了细致的准备步骤,包括底物清洁和预热,以确保最佳的粘附和涂料质量。使用木炭作为振动者材料的微波混合动力加热,促进了粉末混合物的快速和均匀加热,而纯石墨板在此过程中阻止了污染。使用特定功率和频率设置的多模微波涂抹器进行了实验,从而导致最佳涂层形成的受控加热。通过SEM图像说明了微波辅助的覆层过程的精度,揭示了整个底物的覆层颗粒的均匀分布。此外,观察到表面硬度和耐磨性的显着改善,表面硬度增加了44.67%,低磨损速率为0.0020 mm3/m。这些发现突出了开发的覆层技术在增强SS-304底物的机械性能和耐磨性方面的有效性,为其在各种行业中的潜在应用铺平了道路,这些行业需要在滑动接触条件下可靠的表面保护和耐用性。
通过将直接能量沉积(DED)和超声纳米晶体表面修饰(UNSM)相结合而开发了一种混合覆层技术。这是一个有效的过程,可以控制金属包装层内的机械性能,但是改善内部特性的范围很低。因此,在这项研究中,在300和600 O C加热时应用了UNSM过程,以提高该混合添加剂过程的有效性。为了验证该方法的特征,对加热时采用横截面特性的研究进行了研究。在300度的混合层覆盖可产生改善 - 比室温下的结果大40%。在600度时,杂种覆层在较大面积上的机械性能提高了近2倍。在这项研究中,分析了室温和高温杂交覆层过程的特征。提出的方法显示出高改进效果,是改善隔层层内部机械性能的有前途的方法。
摘要:为了确定制备基于CO的合金覆层层的最佳过程参数,基于最佳过程窗口和42CRMO作为底物进行了激光覆层CO基于基于的激光覆层CO合金的实验研究。使用方差分析(ANOVA)用于探索激光过程参数对最佳过程窗口范围内包层层的形成特性的影响。此外,通过灰色关系分析获得了最佳过程参数组合,并进行了优化结果的实验性验证。发现由最佳过程窗口确定的过程参数间隔为激光功率1300–2100 W,扫描速度6–14 mm/s和粉末喂养率17.90-29.84 g/min。每个过程参数的影响顺序为:激光功率>扫描速度>粉末进率。获得了激光功率2100 W的最佳过程参数,扫描速度为6 mm/s和粉末喂养速率17.90 g/min。最佳过程参数的实验性验证结果证明,与初始参数相比,优化参数的灰色相关等级提高了0.260,并且与预测值良好,精度为96%。优化后,横截面面积,宽度与高度的比率,覆层效率和覆层轨道的粉末利用率增加了4.065 mm 2、1.031、1.032、19.032和70.3%,以及70.3%的功能率降低了60.9%。最佳的覆层轨道在没有裂纹,孔和明显的元素分离的情况下很好地粘合到底物上,并包括Cr 3 C 7,COCX,FCC-CO和WC的阶段。
摘要:直接金属沉积(DMD)可用于表面的覆层以及修复零件和功能的修复和增材制造。过程监视和控制方法可确保制造过程中的质量一致。通过光发射光谱进行过程辐射进行监测可以提供有关过程条件和沉积层的信息。这项工作的目的是使用光谱仪从过程中测量光学排放,并识别光谱中的元素线。单光谱已从该过程中记录下来。基于CO的粉末(METCOCLAD21)的单个轨道在S235碱基材料上被覆盖。已经研究了各种过程参数对元素线发病率和强度的影响。此外,已经对光谱排放的激光束,粉末射流和底物之间的相互作用进行了单独检查。结果表明元素线不经常发生。因此,单光谱被分类为包括元素线(A型)和不包括元素线(B型)的光谱。此外,只能检测到非离子元素,铬经常出现。表明,增加激光功率会增加A型光谱的发生率和特定CR I线的强度。,元素线仅在激光束与沉积层的熔体池相互作用中经常发生。
图 2.7 演示三种液态金属破碎机制的示意图。阳极和阴极上均显示轴对称破碎(a)。阳极上显示非轴对称破碎,阴极上显示膜型破碎机制(b)[17]。......................................................................................................................... 11
图 2.7 演示三种液态金属破碎机制的示意图。阳极和阴极上均显示轴对称破碎(a)。阳极上显示非轴对称破碎,阴极上显示膜型破碎机制(b)[17]。......................................................................................................................... 11