1 南方科技大学量子科学与工程研究院和物理系,广东深圳 518055,中国 2 中国科学技术大学合肥微尺度物质科学国家实验室和现代物理系,安徽合肥 230026,中国 3 中国科学技术大学中科院量子信息与量子物理卓越创新中心和协同创新中心,安徽合肥 230026,中国 4 名古屋大学信息学研究生院,日本名古屋千种区 464-8601 5 伦敦数学科学研究所,35a South Street Mayfair,伦敦 W1K 2XF,英国 6 牛津大学沃尔夫森学院,Linton Road,牛津 OX2 6UD,英国
摘要 要检验量子理论是否适用于所有物理系统和所有尺度,需要考虑量子探针与另一个不必完全遵循量子理论的系统相互作用的情况。重要的例子包括量子质量探测引力场的情况,而引力场尚不存在独特的量子引力理论,或者量子场(如光)与宏观系统(如生物分子)相互作用,而宏观系统可能遵循也可能不遵循幺正量子理论。在这种情况下,最近提出了一类实验,通过检测系统是否能够纠缠两个量子探针,可以间接测试不需要遵循量子理论的物理系统(引力场)的非经典性。在这里,我们说明了该论证的一些微妙之处,与相互作用局部性和非经典性的作用有关,并使用具有四个量子比特的核磁共振量子计算平台进行原理验证实验,说明这些提议的逻辑。
纠缠见证 (EW) [4] 为纠缠检测提供了重要的可行方法,且不需要量子态的全部信息。EW 是厄米算子,其所有可分离态的平均值都是非负的,但对于至少一个纠缠态可以为负。[5] 证明,任何纠缠态都可以被至少一个 EW 检测到。然而,对于未知的纠缠态,构造相应的 EW 通常非常困难。针对某些特定的纠缠态,已经提出了几种 EW 构造方法,例如 [6, 7]。EW 还可用于量化纠缠 [8] 和设计独立于测量设备的纠缠检测方法 [9]。EW 的实验设备也已在不同的物理系统中实现 [10, 11]。
1970 年,Mike Gilmor 加入加拿大钢结构协会 (CISC) 时,加拿大总理是皮埃尔·特鲁多,Derek and the Dominoes 的歌曲《Layla》荣登当年音乐排行榜榜首。从那时起,钢铁行业也发生了重大变化。“几乎所有事情都不同了,”Gilmor 说,他自 2002 年以来一直担任协会主席,即将离开 CISC。“我最初是作为开发工程师在这里受聘的,负责开发手册表格。我们一边打印 Hollerith 卡片,一边试图说服人们放弃计算尺,用计算机以更快的方式完成工作。”Gilmor 说,加拿大钢铁行业正处于鼎盛时期。加拿大供应商正在安装最先进的熔炉,并开发新等级的钢材,其强度和腐蚀性均超过世界竞争对手
航空业已见证了许多新型航空电子系统(例如,姿态指示器、无线电导航、仪表着陆系统、近地警告系统)的引入,这些系统旨在克服飞行员外部能见度有限的问题。然而,能见度有限仍然是影响全球航空运营安全和容量的最关键因素。仅在商业航空业,全球超过 30% 的致命事故被归类为可控飞行撞地 (CFIT),即正常运转、机械完好的飞机撞上地形或障碍物,而机组人员由于缺乏外部视觉参考或地形/危险态势感知受损而无法看到。在通用航空业,最大的事故类别是持续飞行进入仪表气象条件,即非仪表等级飞行员继续飞入恶化的天气和能见度,导致视野消失,并可能撞上意外地形或空间迷失方向并失去控制。最后,影响机场延误的最大因素是能见度有限,当天气条件低于目视飞行规则操作时,能见度会降低跑道容量并增加空中交通分离所需的距离。