摘要。机载雪深雷达观测数据(例如 NASA 的“冰桥行动” (OIB) 任务)最近已用于高度计得出的海冰厚度估计以及模型参数化。在北冰洋西部进行了许多比较机载和现场雪深测量的验证研究,证明了机载数据的实用性。但是,在北极的大西洋地区尚未进行验证研究。最近对该地区进行的观测表明,由于薄海冰上的深雪,雪冰状态发生了显著且主要的转变。在挪威年轻海冰、气候和生态系统 (ICE) 考察 (N-ICE2015) 期间,于 2015 年 3 月 19 日在斯瓦尔巴群岛北部地区进行了一项验证研究。这项研究在 OIB 飞越期间收集了地面真实数据。在二维 (2-D) 400 m × 60 m 网格上获得了雪和冰厚度测量值。从相邻浮冰现场收集的额外雪和冰厚度测量值有助于将在网格调查现场获得的测量值置于更区域性的环境中。由于相对较薄的海冰上普遍存在厚雪的情况,在 N-ICE2015 考察期间观察到了广泛的负干舷和积雪淹没。这些条件导致盐水渗入基底雪层并饱和。这导致机载雷达信号发生更多的弥散散射,从而可以很好地探测到雷达主散射地平线的位置
我们在两例 LDL 和总胆固醇偏高的患者中发现了这种变异(BpG 未发表的观测数据)。位于 EGF 前体同源域的变异已在家族性高胆固醇血症 (FH) 患者(PMID 19837725、15241806、11810272、2088165、23375686)以及心肌梗死患者(PMID 25487149)和乳糜微粒血症综合征患者(PMID 28391899)中报告。Pirillo 等人报告了 107 名患有杂合 p.(Gly549Asp) 变异的 FH 患者和一名患有 p.(Gly549Asp) 变异且 PCSK9 基因中存在变异的患者(PMID 28965616)。 T raeger-Synodinos 报告了 34 名年龄在 2 个月至 16 岁之间的儿童,他们携带 p.(Gly549Asp) 变异杂合子 (PMID 9544850)。该变异也已在数名 FH 患者临床变异数据库 ClinVar 3698、荷兰 FH 数据库和 UMD-LDLR 数据库中报告。功能研究表明,该变异可降低受刺激的 T 淋巴细胞和 EBV 转化的 B 淋巴细胞中的 LDLR 活性,并抑制 LDL 转运并减少细胞中的 LDL 摄取 (PMID 21865347、25647241)。此外,已报道另一种影响相同氨基酸残基的变体 p.(Gly549Val) 或 p.(Gly528Val) 与 FH 相关 (PMID 1301940 , ClinVar 251955 )。
这一年尤其特殊,因为在美国大陆可以观测到两次日食。2023 年 10 月 14 日,新墨西哥州白沙导弹靶场 (WSMR) 非常接近日环食路径的顶峰,而 2024 年 4 月 8 日,弗吉尼亚州瓦洛普斯岛观测到近 80% 的日全食。六枚 Terrier-Black Brant 火箭被发射,用于研究日食期间的电离层,每个位置发射三枚。安柏瑞德航空大学的 Barjatya 博士是首席研究员,所有运载工具和有效载荷均表现正常。为了实现多点测量,有效载荷使用了最近开发且符合飞行要求的可弹射子有效载荷。探空火箭计划的首项任务是 2024 年春季在阿拉斯加州 Poker Flat 研究靶场 (PFRR) 进行的太阳耀斑活动。两个有效载荷,之前都用于不同的研究,聚焦光学 X 射线太阳成像仪 (FOXSI) 4 和高分辨率日冕成像仪耀斑 (Hi-C Flare) 已准备就绪,以应对太阳耀斑事件。PFRR 延长了发射窗口,每天都有发射机会。科学家使用 GOES X 射线数据监测太阳活动,并能够在 M 级耀斑期间发射。该活动的目标是获取太阳耀斑的多尺度、多波长观测数据,并为验证耀斑优化仪器提供可能性。
抽象热浪对人类健康,社会和经济有影响。本研究旨在提高对博茨瓦纳特征的理解。为其识别,热浪定义为每天最高温度超过正常最高温度至少连续五个天数的时期。四个热浪变量:(i)平均严重程度,(ii)平均频率,(iii)平均持续时间和(iv)平均热浪天数。从研究中使用的九个天气天气站的每日最高温度观测数据是从博茨瓦纳气象服务部获得的。电台的数据记录在1959年至2015年(56年)中与之截止。已经分析了所选的热浪变量的趋势,其统计学意义已通过Mann Kendall检验进行了评估。已经发现,在1959年至2015年期间,电台的平均严重程度和平均热浪天数(更强大的热浪变量)通常会增加趋势。Mann Kendall测试表明,九个选定电台的平均严重程度中有两个具有统计学意义,其趋势在10%的意义水平上具有统计学意义。它还表明,一对选定的站点在平均热浪天数中具有统计学上的显着趋势。其他电台的平均严重程度和平均热浪天数的趋势在统计上不显着。关于平均持续时间和平均频率的趋势(较不健壮的热波变量),该测试表明它们在所选的显着性水平上没有具有统计学意义的趋势。
摘要:全球气候模型 (GCM) 是理解气候系统及其在情景驱动排放路径下演变趋势预测的重要工具。其输出结果被广泛应用于气候影响研究,用于模拟气候变化的当前和未来影响。然而,与气候影响研究所需的高分辨率气候数据相比,气候模型输出结果仍然较为粗糙,并且相对于观测数据也存在偏差。在现有的全球尺度上经过偏差调整和降尺度处理的气候数据集中,分布尾部的处理是一个关键挑战;许多此类数据集使用了分位数映射技术,而这些技术已知会抑制或放大尾部的趋势。在本研究中,我们应用分位数增量映射 (QDM) 方法 (Cannon 等,2015) 进行偏差调整。在偏差调整之后,我们应用一种名为“分位数保留局部模拟降尺度”(QPLAD)的新型空间降尺度方法,该方法旨在保留分布尾部的趋势。这两种方法都集成到一个透明且可重复的软件流程中,我们将其应用于耦合模式比较计划第六阶段 (CMIP6) 实验 (O'Neill et al., 2016) 的历史实验和四种未来排放情景(从积极缓解到无缓解)的全球每日 GCM 地表变量输出(最高和最低温度以及总降水量),即 SSP1-2.6、SSP2-4.5、SSP3-7.0 和 SSP5-8.5 (Ri-
交联乙烯-四氟乙烯 (X-ETFE) 因其出色的耐热、抗蠕变和抗电弧跟踪性能而常用作航天器中的电缆护套材料。2003 年,Midori-II(先进地球观测卫星-II:ADEOS-II)由于电力供应减少而停止提供观测数据。异常原因被确定为太阳能桨上的放电事件;线束损坏被认为是放电的可能诱因。随后,JAXA 评估了由 X-ETFE 制成的电缆护套的退化情况。对于 Midori-II 任务,最严重的环境因素是高温;循环温度测试显示产生了裂纹。此外,地面测试结果表明,护套材料因原子氧 (AO)、电子束 (EB) 和紫外线 (UV) 照射等空间环境影响而退化。特别是,由紫外线引起的褐变相当严重,高温尤其加剧。不同温度下紫外线照射对 X-ETFE 聚合物太阳吸收率变化的影响。与低于 313K 时相比,373K 样品的太阳吸收率下降很快。太阳紫外线引起的褐变增加了空间材料的太阳吸收率(导致温度进一步升高),从而导致恶性循环。评估后,JAXA 提出建议,X-ETFE 电缆护套不应暴露在太空环境中。本文介绍了空间环境对 X-ETFE 聚合物(SPEC 55 电线和电缆;Raychem – Tyco Electronics Corp.)影响的评估结果:紫外线、AO 和电子束 (EB) 辐照。1. 简介
作为坦桑尼亚-挪威 REDD+ 监测报告和核查 (MRV) 合作项目的一部分,分别来自 Envisat ASAR 和 ALOS Palsar 的 2007-2011 C 和 L 波段合成孔径雷达 (SAR) 后向散射数据已被处理、分析并用于坦桑尼亚林迪地区 Liwale 区研究区的森林和森林变化制图。国家林业资源监测和评估 (NAFORMA) 项目的森林资源清查地块的土地覆盖观测数据已被用于训练高斯混合模型和 k 均值分类器,这些模型和分类器已被组合起来,以便将研究区域划分为森林、林地和非森林区域。通过对 2007-2011 年 ALOS Palsar 覆盖范围内的 HH 和 HV 极化中的最大后向散射马赛克进行分类,提取了最大森林和林地扩展掩模,并可用于通过过滤非森林地区的变化来有效地绘制年际森林变化图。还分析了 Envisat ASAR APS(交替极化模式),旨在改进基于 ALOS Palsar 的森林/林地/非森林分类。显然,C 波段 SAR 和 L 波段 SAR 的组合提供了有用的信息,可以平滑分类,尤其是增加林地类别,但尚未证实对墙到墙土地类型分类的整体改进。结果的质量评估和验证是使用来自 WorldView、Ikonos 和 RapidEye 以及 NAFORMA 现场观测的非常高分辨率光学数据进行的。
我们描述了 ThothX (thothx.com) 的新型深空雷达技术 Earthfence 的全球扩张。Earthfence 是一种软件定义的脉冲压缩雷达技术,使大口径天线的操作员能够将其重新用于 GEO 单基地雷达。Earthfence 最初由 ThothX 位于渥太华附近的 46 米抛物面天线开发,目前已部署在该天线上,这是加拿大最大的全可控天线,可观测范围达一亿米的驻留空间物体,并提供近乎实时的米级范围精度,具有业界领先的延迟、节奏和自动化。该解决方案在 C 波段运行,完全数字化,雷达回波脉冲在低噪声放大后以复杂正交形式数字化,并转发给超级计算机集群进行分析,该超级计算机集群应用了包括脉冲解压缩在内的雷达处理算法。该系统无需人工干预即可将结果实时传输到包括统一数据库在内的存储库,ThothX 定期在 Sprint 高级概念训练 (SACT) 活动期间提供对 GEO 航天器的雷达观测数据,这是太空部队和商务部的一项联合举措。与传统雷达相比,Earthfence 采用新颖的硬件技术和非常低的放大器功率水平,几乎无法被观察目标探测到,因此它具有固有的抗干扰性。Earthfence 的高精度结果仅依赖于对氢原子钟频率标准的校准。
现今随着高通量测序技术的飞速发展,微生物群落分析受到越来越多的关注。观测数据具有以下典型特征:高维、成分复杂(处于单纯形状态),甚至由于种类过于丰富而呈现尖峰性和高度偏斜性,这使得传统的相关性分析无法研究微生物种类之间的共现和共排斥关系。在本文中,我们解决了该类数据的协方差估计难题。假设基协方差矩阵位于一类公认的稀疏协方差矩阵中,我们采用文献中称为中心对数比协方差矩阵的代理矩阵,由于维数趋向于无穷大,因此它与真实的基协方差矩阵几乎无法区分。我们为中心对数比协方差矩阵构建了一个均值中位数 (MOM) 估计量,并提出了一种可适应各个条目变化的阈值处理程序。通过施加一个比文献中的亚高斯条件弱得多的有限四阶矩条件,我们推导出谱范数下的最佳收敛速度。此外,我们还为支持恢复提供了理论保证。MOM 估计量的自适应阈值处理程序易于实现,并且在存在异常值或重尾时具有稳健性。进行了彻底的模拟研究,以显示所提出的程序优于一些最先进的方法。最后,我们应用所提出的方法来分析人类肠道中的微生物组数据集。用于实现该方法的 R 脚本可在 https://github.com/heyongstat/RCEC 获得。
虽然小海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,关于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝度的物种比不可固定的背景气体重。虽然已经预测,潮湿对流可能会停止以上这些可凝结物种的阈值丰度,但该预测基于简单的线性分析,并依赖于关于大气饱和的一些有力的假设。为了调查这个问题,我们开发了一个3D云分辨模型,用于具有大量可冷凝物种的氢气大气,并将其应用于原型的温带Neptune样星球 - K2-18 b。我们的模型证实了在可凝结蒸气的临界丰度之上抑制湿对流的抑制作用,以及在此类行星大气中稳定分层层的发作,这导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但逼真的1D模型,该模型捕获了Neptune类气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用模型研究了K2-18 b上H 2域大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。