第 1 章 简介 1.1 目的 国家气象局观测手册第 8 号(WSOH #8)规定了适用于从事获取和报告人工地面观测的补充航空气象报告站 (SAWRS) 的航空气象观测、报告、编码标准和程序。它提供了一个框架,可以在其中识别气象现象并以标准化和易于理解的格式报告。 1.2 观测程序 程序假设航空例行气象报告 (METAR) 每小时进行一次,并且每当观察到重大变化或发生重大事件时进行特殊观测 (SPECI)。气象表 MF1M-10C 上记录的气象观测仅反映从通常的观测点看到的条件,并且除非另有规定,否则必须发生在 MF1M-10C 上记录的时间前 15 分钟内。 1.3 指定站点 指定站点@ 是指由国家气象局总部或地区总部指示执行特定任务的气象观测站,该任务并非要求所有站点都执行。 1.4 标准的适用性 本手册中描述的程序和做法仅在站点有能力遵守的情况下才适用。在本手册中,适用以下定义: a. 应@ 表示程序或做法是强制性的; b. 应该@ 表示程序或做法是推荐的; c. 可以@ 表示程序或做法是可选的; d. 将@ 表示未来性;它不是应用于实践的要求。 1.5 人工观测的格式 第 1 章介绍人工观测。第 2 章介绍人工观测、类型和特殊标准。第 3 至第 8 章重点介绍气象观测中出现的特定要素及其相关参数。 第 3 章 - 风 第 4 章 - 能见度
第 1 章 简介 1.1 目的 国家气象局观测手册第 8 号(WSOH #8)规定了适用于从事获取和报告人工地面观测的补充航空气象报告站 (SAWRS) 的航空气象观测、报告、编码标准和程序。它提供了一个框架,可以在其中识别气象现象并以标准化和易于理解的格式报告。 1.2 观测程序 程序假设航空例行气象报告 (METAR) 每小时进行一次,并且每当观察到重大变化或发生重大事件时进行特殊观测 (SPECI)。气象表 MF1M-10C 上记录的气象观测仅反映从通常的观测点看到的条件,并且除非另有规定,否则必须发生在 MF1M-10C 上记录的时间前 15 分钟内。 1.3 指定站点 指定站点@ 是指由国家气象局总部或地区总部指示执行特定任务的气象观测站,该任务并非要求所有站点都执行。 1.4 标准的适用性 本手册中描述的程序和做法仅在站点有能力遵守的情况下才适用。在本手册中,适用以下定义: a. 应@ 表示程序或做法是强制性的; b. 应该@ 表示程序或做法是推荐的; c. 可以@ 表示程序或做法是可选的; d. 将@ 表示未来性;它不是应用于实践的要求。 1.5 人工观测的格式 第 1 章介绍人工观测。第 2 章介绍人工观测、类型和特殊标准。第 3 至第 8 章重点介绍气象观测中出现的特定要素及其相关参数。 第 3 章 - 风 第 4 章 - 能见度
第 1 章 简介 1.1 目的 国家气象局观测手册第 8 号(WSOH #8)规定了适用于从事获取和报告人工地面观测的补充航空气象报告站 (SAWRS) 的航空气象观测、报告、编码标准和程序。它提供了一个框架,可以在其中识别气象现象并以标准化和易于理解的格式报告。 1.2 观测程序 程序假设航空例行气象报告 (METAR) 每小时进行一次,并且每当观察到重大变化或发生重大事件时进行特殊观测 (SPECI)。气象表 MF1M-10C 上记录的气象观测仅反映从通常的观测点看到的条件,并且除非另有规定,否则必须发生在 MF1M-10C 上记录的时间前 15 分钟内。 1.3 指定站点 指定站点@ 是指由国家气象局总部或地区总部指示执行特定任务的气象观测站,该任务并非要求所有站点都执行。 1.4 标准的适用性 本手册中描述的程序和做法仅在站点有能力遵守的情况下才适用。在本手册中,适用以下定义: a. 应@ 表示程序或做法是强制性的; b. 应该@ 表示程序或做法是推荐的; c. 可以@ 表示程序或做法是可选的; d. 将@ 表示未来性;它不是应用于实践的要求。 1.5 人工观测的格式 第 1 章介绍人工观测。第 2 章介绍人工观测、类型和特殊标准。第 3 至第 8 章重点介绍气象观测中出现的特定要素及其相关参数。 第 3 章 - 风 第 4 章 - 能见度
了解海平面趋势以及全球海平面与当地海平面之间的关系,可以提供有关地球气候对海洋和大气影响的重要信息。海平面变化与许多大气和海洋过程直接相关。全球气温、水文循环、冰川和冰盖覆盖率以及风暴频率和强度的变化是气候变化已知影响的例子,所有这些都与长期海平面记录直接相关,并被记录下来。海平面是了解气候变化影响的重要关键,不仅在我们沿海地区,而且在世界各地。通过将基于观测的特定区域的当地相对海平面变化率与全球海平面上升预测(来自 IPCC,2007 年)相结合,沿海管理人员和工程师可以开始分析和规划海平面上升对长期规划的影响。
定位精度。目前定位精度分析方法主要有几何精度因子(GDOP)、克拉美-罗下限(CRLB)、圆概率误差(CEP)等。本质上,GDOP可以看作是最小二乘估计,而CRLB则是最大似然估计。当系统为线性,高噪声为高斯独立白噪声时,二者等价,但在非线性系统中,二者会产生一定的差异。这是由于GDOP忽略了误差协方差对角元素,对传感器几何位置的敏感性高于CRLB,CRLB是作为传感器目标几何不确定性的分析工具,而CRLB是基于传感器对目标观测的统计性能评估工具
摘要 摘要 本文探讨了量子力学中的测量问题,并评估了三种主要解释:哥本哈根解释、多世界解释 (MWI) 和导航波理论。哥本哈根解释认为,粒子在被测量之前处于叠加状态,此时它们的波函数会崩溃。MWI 认为,所有可能的结果都发生在宇宙中独立、不相互作用的分支中,从而消除了波函数崩溃,但引入了无数个不可观测的宇宙。导航波理论通过隐藏变量重新引入了决定论,引导粒子沿着确定的路径行进。本文的结论是,哥本哈根解释是最合理的,它平衡了经验充分性、本体论清晰度和简单性。
本课程全面介绍机器人探索和人工智能驱动的测绘和采样技术,专为太空探索和地球观测而设计。学生将获得计算机视觉、同步定位和测绘 (SLAM)、多机器人协调以及使用先进人工智能工具在极端环境中操作等关键领域的专业知识。课程强调现实世界的实施,将讲座与使用移动自主系统的动手项目相结合,包括可作为数字孪生和物理存在于 DREAMS 实验室中的自主地面、空中和水上机器人。课程以小组为基础的期末项目结束,学生将设计和演示用于未来太空探索、行星科学和地球观测的端到端机器人系统。