首先,根据泰勒展开式对最近发展起来的非线性滤波方法——Cuature卡尔曼滤波器(CKF)的性能评估进行了分析。理论分析表明,非线性滤波方法CKF只有在非线性系统中实现时才显示出其优势。类似地,非线性方向余弦矩阵(DCM)表达式被纳入紧密耦合的导航系统中,以表示真实导航坐标系和估计导航坐标系之间的对准误差。仿真和实验结果表明,在不可观测的大指向误差下,以及在 GPS 故障且指向误差快速累积导致 psi 角的表达式失效的情况下,CKF 的性能优于扩展卡尔曼滤波器(EKF),从而表达一定程度的非线性。
一般情况下,LEO 物体的观测主要通过雷达系统进行,但 JAXA 一直致力于开发光学系统,以降低建设和运营成本。开发了一种用于 LEO 观测的大型 CMOS 传感器(图 2)。使用基于 FPGA 的图像处理技术分析来自 CMOS 传感器的数据可以帮助我们探测 10 厘米或更小的 LEO 物体。为了增加对 LEO 和 GEO 物体的观测机会,除了日本的入笠山天文台外,还在澳大利亚建立了一个远程观测站(图 3)。一台 25 厘米望远镜和四台 18 厘米望远镜可用于各种目的。另一个远程观测站将在澳大利亚西部建立,这将使我们能够使用来自澳大利亚两个站点的数据对 LEO 物体进行精确的轨道测定和高度估计。
便携式设备是 2003 年第一次自主和拉格朗日平台和传感器 (ALPS) 会议的推动因素。这次会议是在 21 世纪初期举行的,当时有几种关于如何观察海洋的相互竞争的想法。当时的观测资源相对丰富,而且在千禧年左右进行了许多规划演习。21 世纪初期已经取得了许多成功,全球漂流者计划和 Argo 剖面浮标阵列正在进行中。水下滑翔机刚刚开始用于科学而不是工程测试。螺旋桨驱动的自主水下航行器 (AUV) 开始得到广泛使用。小型化趋势导致传感器可用于广泛的物理和生物地球化学变量。无论是有意还是无意,ALPS 会议预示着自主观测的快速增长,这从根本上改变了观测海洋学。
摘要:计算海洋学是通过数值模拟研究海洋现象,特别是动力学和物理现象。过去几十年来,信息技术的进步推动了全球海洋观测数量和海洋数值模拟保真度的指数级增长。然而,海洋模拟的增长速度更是呈指数级增长。我们认为,这种更快的增长正在改变实地测量和数值模拟对于海洋学研究的重要性。它正在推动计算海洋学作为与观测海洋学齐名的海洋科学分支而日趋成熟。一方面,超高分辨率海洋模拟仅受到观测的松散限制。另一方面,应消除分析此类模拟输出的障碍。尽管存在一些特定的限制和挑战,但计算海洋学的未来仍有许多机遇。最重要的是混合计算和观测方法的前景,以增进对海洋的了解。
进入太空:推进对于进入太空和获得电信、导航和地球观测的好处至关重要。如今,发射行业受到多种趋势的影响。首先,发射节奏每年都在增加,这是由于对太空基础设施支持的服务的需求不断增长。随着低地球轨道卫星通信星座(如 Starlink 或 OneWeb 和 Amazon Kuiper)以及两个计划中的中国机构星座 Guowang 和 G60 的出现,这一趋势急剧加剧。第二个重大突破是垂直着陆和运载火箭助推级可重复使用,这是 SpaceX 的猎鹰 9 号开创的。尽管猎鹰 9 号是目前唯一具有可操作和可靠的助推级可重复使用技术的运载火箭,但可重复使用的火箭发射在 2023 年将占所有发射的 41% 9 。第三个主要趋势涉及向碳中和和可持续的转变
•Alisio-1是Canarias(IAC)和IACTEC空间的6U立方体,是第一个用于地球观察的金丝雀群岛卫星。它的主要乐器是由IACTEC空间团队开发的Drago-2(用于远程分析地面观测的示范器),该摄像头是在今年年初在D-Orbit在D-Orbit通过Stars Mission敲打的过程中对示范任务进行了测试的。,每像素的分辨率为50 m,轨道为500 km的轨道为32 km,Drago-2能够在短波红外获得高质量的多光谱图像。Alisio-1卫星还将包括一个光学激光通信模块,该模块将其图像以比无线电通信更高的速度将其图像发送到地球上的任何光电站。alisio-1旨在成为计划预防和反应自然灾难的关键因素。此任务得到了D-Orbit在西班牙的本地合作伙伴Deimos Space的支持。
光学传感器现在被广泛用作监视空间物体的经济有效的解决方案。ArianeGroup Helix ® 网络(前身为 GEOTracker ® 网络)完全基于光学传感器,可以为各种空间物体提供精确的角度数据。然而,对轨道物体的传统光学观测通常仅限于夜间。因此,有利的观测时间跨度是有限的,尤其是对于低地球轨道上的物体,这些物体通常位于相对于站点的地球阴影中。因此,白天观测的能力将允许延长观测时间并增加观测机会。2021 年,ArianeGroup 制造了一个短波红外 (SWIR) 传感器的原型,用于首次测试并允许在白天成功探测物体。在概念验证之后,ArianeGroup 继续致力于优化站点及其相关算法,以提高性能。在本文中,我们将描述站点的配置、获得的初步结果以及将集成到现有网络中的工业化运营站点的未来发展方向。
近年来,广播式自动相关监视 (ADS-B) 服务在民用和军用航空中变得至关重要,它可以跟踪受控区域地面上的飞机并为非受控空域的飞机提供服务。除了地面飞机探测之外,一些机构已经实施并验证了对受控区域和非受控区域的太空监视 [1][2]。对于科学航天器,特别是用于地球观测的纳米卫星 (<10kg),尺寸和重量是限制和影响设计的最主要因素,对于天线系统也是如此。因此,在使用天基监视系统时,优化的天线设计以检测飞机信号是强制性的。在本文中,我们提出了一种小尺寸、低轮廓的 L 波段天线,适用于太空操作并针对 ADS-B 信号接收进行了优化。设计要求和约束在第 II 部分中描述,模拟和测试结果在第 III 部分中给出。第 IV 部分总结了这里提出的工作。