来源:ACER 根据国家氢能战略和路线图、NECP 以及国家监管机构提供的信息得出。注:2023 年电解槽的实际安装容量基于欧洲氢能观测站的数据
摘要:近年来,人工智能 (AI) 安全在各种安全关键和道德问题的影响下获得了国际认可,这些问题有可能掩盖 AI 的广泛有益影响。在此背景下,AI 观测站工作的实施代表了一个关键的研究方向。本文提出了一种跨学科的 AI 观测站方法,将各种回顾性和反事实观点融为一体。我们利用具体的实际例子提供实用建议,同时阐明目标和局限性。区分无意和有意触发的具有不同社会心理技术影响的 AI 风险,我们举例说明了回顾性描述性分析,然后是回顾性反事实风险分析。基于这些 AI 观测站工具,我们提出了近期的跨学科 AI 安全指南。作为进一步的贡献,我们通过两个不同的现代人工智能安全范式的视角讨论了差异化和量身定制的长期方向。为简单起见,我们分别用术语人工智能愚蠢(AS)和永恒创造力(EC)来指代这两个不同的范式。虽然 AS 和 EC 都承认需要采用混合认知情感方法来确保人工智能安全,并且在许多短期考虑方面存在重叠,但它们在多个设想的长期解决方案模式的性质上存在根本区别。通过汇编相关的潜在矛盾,我们旨在为实践和理论人工智能安全研究中的建设性辩证法提供面向未来的激励。
如今,随着从太空天体物理观测站大量获取数据、在聚变能和 x 射线激光中进行高温实验室实验,以及对中性到高度电离原子的更高精度和大量数据的需求,这项工作至关重要。
摘要:加拿大海洋网络公司发起了一个项目,旨在评估用于有线海洋观测站的低频智能水听器的性能。找不到合适的独立校准设施,无法校准 a) 数字水听器或 b) 低至 0.01 Hz。数字水听器系统缺乏端到端校准能力是潜在的错误来源,而数字水听器校准缺乏标准则需要使用多种指标,例如 dB re µPa 2 @FS 或 dB re counts 2 /µPa 2 。由于缺乏现有的端到端校准系统,因此需要为海洋观测站设计一个低频数字水听器校准系统。本文介绍了新校准系统的设计、操作挑战和性能。该系统由活塞驱动,活塞以正弦方式对少量有限体积的水加压,参考压力传感器和被测单元浸入其中。校准组件浸入水浴中以进行热阻尼,并将水浴封闭以进行隔振。
高北极中的大气测量值是具有挑战性的,因为该地区的偏远,困难的转运,不一致的通信和极端的环境条件。在2003年,在加拿大环境(EC)北极平流层臭氧观测站(Astro)关闭后,一群大学和政府科学家发现了加拿大大气变化的网络(Candac),这是一群高北极观测值,这是一项高优先级的高优先性,需要改善加拿大族群的研究测量结果。为选择一个站点并获取所需资金以填充它而做出了巨大的努力。这项活动在2007年国际极地年(IPY)的规划中获得了新的紧迫性,高北极观测站将直接响应IPY意图,不仅是为了在整个IPY时间范围内进行密集的测量,还要“留下观察站点,设施和系统的遗产,以支持正在进行的极地研究和监测”(ICSU,2004:10)。
图片由美国国家航空航天局/戈达德太空飞行中心科学可视化工作室提供,蓝色弹珠下一代数据由 Reto Stockli(美国国家航空航天局/戈达德太空飞行中心)和美国国家航空航天局地球观测站提供。
摘要。本研究重点关注巴基斯坦空间天气监测的进展。巴基斯坦第一座地磁观测站于 1953 年在奎达建立。然而,我们现在正式称之为空间天气服务的开始是在 1971 年,当时国家航天局巴基斯坦空间和高层大气研究委员会 (SUPARCO) 建立了该国第一个电离层站。后来,1983 年,在卡拉奇建立了一个地磁观测站,旨在为相关用户提供高频 (HF) 支持和地磁风暴警报。随着时间的推移,各国开始优先考虑空间天气监测,以确保技术资产的安全。因此,升级仪器阵列被认为是当务之急,以保持操作的可靠性和数据的有效利用,从而为地方、区域和全球范围的研究做出贡献。巴基斯坦最近建立了一个专门的空间天气监测设施,称为巴基斯坦空间天气中心 (PSWC)。本文介绍了巴基斯坦空间天气基础设施的历史演变和 PSWC 目前的贡献。
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
新泽西理工学院的太阳-地球研究中心 (CSTR) 是地面和太空太阳和地球物理学领域的国际领导者,致力于了解太阳对地球空间环境的影响。CSTR 运营着加利福尼亚州的大熊太阳天文台 (BBSO) 和欧文斯谷太阳能电池阵 (OVSA)、新泽西州珍妮跳跃州立森林的杰弗天文台以及分布在南极冰架上的自动地球物理观测站 (AGO)。
Lee Chapman、Nicole Cowell – 伯明翰大学 Philip James、Jennine Jonczyk、Daniel Bell – 纽卡斯尔大学 James Evans、David Topping、Thomas Bannan、Ettore Murabito、Emma Tsoneva – 曼彻斯特大学 Mark Birkin、Dani Arribas-Bel、Dustin Carlino - 艾伦图灵研究所 执行摘要 2021 年秋季,交通部 (DfT) 和纽卡斯尔、曼彻斯特和伯明翰的三个城市观测站成功获得了 30 万英镑的经济数据创新基金资助。该资助的主要目标是促进和改善跨组织的数据共享,建立最佳实践,并在此过程中为城市交通数字孪生奠定基础。该项目的性质意味着在项目过程中其他各方也参与其中,即 Connected Places Catapult 和艾伦图灵研究所。本报告总结了该项目的主要成果,即对可用传感器数据进行分类、推荐元数据协议以及开发原型以集成(协调)和可视化来自 DfT、城市观测站和其他来源的不同数据流。还介绍了一些可供进一步开发的用例,包括基于 AI 的交通预测和空气质量建模与监测。报告还与脱碳议程建立了联系。报告最后给出了一份蓝图,概述了将这项工作提升为
