近年来,人们发现了量子信息论与量子引力之间的一些深层次联系。AdS/CFT 对偶为研究这些联系提供了一个富有成效的框架。这种关系的主要例子是 Ryu-Takayanagi 公式,它为对偶 CFT 中的纠缠熵提供了几何解释 [1]。Van Raamsdonk 也强化了这种关系 [2]。他认为两个区域之间的纠缠量与它们的距离有关,我们可以通过纠缠自由度来连接几何,通过解开纠缠来分离它们。后来,这一观察导致了 ER=EPR 猜想 [3]。下一个例子来自将块算子重构为一组非局部模糊的 CFT 算子 [4-6],这导致了一些悖论。为了解决这些悖论,[7] 的作者使用了量子纠错码的概念。量子引力与量子信息论之间的第三个联系是量子计算复杂性 [8]。这些想法源于一个关于热平衡下 AdS 黑洞爱因斯坦-罗森桥增长的难题。全息复杂性使我们能够理解视界背后丰富的几何结构。量子复杂性的一个特性是,即使在边界理论达到热平衡之后很长时间,它仍会继续增长。事实上,据推测复杂性会持续增长,直到系统自由度数量呈指数增长的时间尺度 [9-11]。量子计算复杂性是量子信息论中的一个概念,它估计从简单的基本门构建所需目标状态的难度。在这个概念中,门是可以从全集中获取的幺正算子 [12,13]。在 AdS/CFT 对应关系的背景下,提出了两种评估边界态复杂性的建议。第一个是,复杂度应该是极值余维数为 1 的块超曲面 Σ 的体积的对偶,该曲面在定义边界状态的时间片上与渐近边界相交。该陈述总结为:CV = max V Σ
当 OTOC 饱和后,最初局部信息会被编码到全局纠缠中,从而阻碍局部测量的数据。如果加扰路径不完全清楚或最终状态部分受损,则很难恢复这些信息。例如,一个量子比特被扔进黑洞,很快就会分散并消失在视界后面。利用早期霍金辐射,只需要从黑洞发射出几个量子比特的信息就可以重建丢失的量子比特 [5],但如果不了解该系统的大量知识,就没有简单的办法做到这一点 [6-8]。为了提出解决类似问题的方案,我们考虑了一种实用的信息加扰和解扰方案。我们将这种方案描述为量子处理器的一个假设应用,例如量子霸权测试 [9] 中的处理器,用于隐藏量子信息。我们的处理器可以比参考文献中的更简单。 [ 9 ] 因为我们要求只有一个量子比特可以准备和测量,这适用于液体 NMR 量子计算机的实验 [ 10 , 11 ]。假设 Alice 有这样一个处理器,它可以在多个相互作用的量子比特的可逆幺正演化过程中实现快速信息扰乱。她应用这种演化来隐藏其中一个量子比特的原始状态,我们称之为中心量子比特。其他量子比特称为“bath”。为了恢复初始的中心量子比特状态,Alice 可以应用时间反转协议。假设 Bob 是一个入侵者,他可以在 Alice 不知道的任何基础上测量中心量子比特的状态,如图 1 所示。如果她的处理器已经对信息进行了扰乱,那么 Alice 确信 Bob 无法获得任何东西
使用绝对天体测量的国际天体参考框架 在 2023 年 2 月出版的《天文学杂志》 [1] 上发表的一篇新论文中,美国天文学家 David Gordon 领导的团队海军天文台报告首次在国际天文学联合会的官方天体参考框架中精确定位了我们银河系中心的黑洞。位于我们银河系中心的是一个超大质量黑洞,被称为人马座 A* (Sgr A*),这是一个强大的射电源,自 1950 年代初以来就为人所知和研究。银河平面中的气体和尘埃在光谱的可见部分遮蔽了它,但对其附近恒星运动的红外观测表明,它的质量约为 400 万个太阳质量 [2] 。最近,事件视界望远镜 [3] 拍摄到了它的影子。但尽管对它进行了许多研究,但要准确在天空中定位它却非常困难。准确定位人马座 A* 相对于天体参考系中其他源的位置,对于定义银河系坐标系和研究银河系结构、运动学和动力学,以及在无线电、毫米波和红外线下进行研究和图像之间的配准都非常重要。之前对其位置的最佳估计是使用一种称为“差分”天体测量的无线电干涉测量技术进行的,其中它的天体坐标是相对于一个或两个附近的校准器无线电源进行估计的。然而,所使用的校准源的坐标仅精确到几十毫角秒 (mas),并且可能会随时间略有变化,导致 Sgr A* 的坐标也存在类似的不确定性。但现在,一项由美国海军天文台天文学家领导的新研究发表在 2023 年 2 月的《天文学杂志》[1] 上,首次确定了 Sgr A* 的精确位置以及它在国际天文学联合会官方天体参考框架 ICRF3 [4] 中的自行。ICRF3 是国际天体参考框架的第三个实现,是一个由甚长基线干涉测量 (VLBI) 确定的 ~4500 个紧凑类星体射电源的精确坐标组成的天体参考框架。过去几年,美国海军天文台的 David Gordon 和同事南非射电天文台的 Aletha de Witt 以及喷气推进实验室的 Christopher Jacobs 一直在使用名为 VLBI“绝对”天体测量的射电干涉测量技术对人马座 A* 进行观测,该技术通过