摘要 蓟马是重要的农业害虫,通过取食和传播植物病毒对农作物造成广泛损害,造成了巨大的经济损失。有效的 DNA 提取对于分子鉴定和病毒检测至关重要,但由于其体积小、角质层坚硬以及受到植物衍生物质的污染,提取 DNA 往往具有挑战性。已经开发出各种 DNA 提取方法来应对这些挑战,包括碱裂解、酶消化、基于有机溶剂的方法和旋转柱技术。碱裂解法是一种快速且经济有效的解决方案,可产生适用于 PCR 等应用的 DNA,但可能需要额外的纯化才能进行灵敏的分析。酶消化使用蛋白酶 K 等试剂,可确保获得相对纯净的 DNA,这些 DNA 可以稳定地储存并可用于下游应用。基于有机溶剂的方法,例如 CTAB 与氯仿相分离和酒精沉淀,对于分离高质量 DNA 非常有效,尤其是在含有大量污染物的样品中。基于离心柱的商业试剂盒进一步简化了该过程,通过最大限度地减少杂质,提供具有极高纯度的 DNA,使其成为敏感和高通量应用的理想选择。DNA
引言 2019 年底,中国武汉出现了一批原因不明的肺炎患者 [1]。随后,世界卫生组织(WHO)于 2020 年 2 月 11 日根据其术语宣布了这种新型冠状病毒肺炎的标准格式:2019 冠状病毒病(COVID-19)。目前,透皮给药系统使用最多的方法是外用药膏、透皮贴剂、皮下针。由于皮肤角质层的存在,作为分子的屏障,只有极少数分子能够到达作用部位,因此该方法中使用的大多数药物和药剂的效果都很低 [2]。因此,透皮给药系统得到了发展,出现了另一种称为微针的方法。微针是一种智能方法,也是一种新型的透皮给药系统,它增加了将药物输送到作用部位的潜力。它是一种高度为 10-2000 微米、宽度为 10-50 微米的微型针,可无痛地直接穿透真皮组织。微针可以输送不同大小和形式的分子。它被认为是一种药物和疫苗输送装置。它可以装入活病毒或灭活病毒疫苗、DNA 疫苗或抗原。空心微针在流感疫苗接种中得到广泛应用。微针有许多优点,因为它的给药可行且无痛,它增加了皮肤的渗透性,并能输送不同大小的药物和疫苗[3]。如今,许多研究已经注册,以研究微针的效果
通过无针和非侵入性药物输送系统进行经皮免疫 (TCI) 是一种有前途的方法,可以克服传统肠外疫苗接种方法的当前局限性。皮肤可以靶向进入皮肤内的专业抗原呈递细胞 (APC) 群,例如朗格汉斯细胞 (LC)、各种真皮树突状细胞 (dDC)、巨噬细胞等,这使得皮肤成为理想的疫苗接种部位,可以根据需要专门塑造免疫反应。皮肤角质层 (SC) 是主要的渗透屏障,疫苗成分需要以协调的方式克服该屏障,以实现最佳进入真皮 APC 群,从而诱导 T 细胞或 B 细胞反应以产生保护性免疫。虽然有许多方法可以穿透 SC,例如电穿孔、超声或离子电渗疗法、屏障和消融方法、喷射和粉末注射器以及微针介导的运输,但我们将重点介绍基于粒子的 TCI 系统的最新进展。这种特殊方法通过扩散和沉积在毛囊中将疫苗抗原与佐剂一起递送至毛囊周围的 APC。本文讨论了不同的递送系统,包括纳米颗粒和脂质系统,例如固体纳米乳剂,以及它们对免疫细胞和记忆效应产生的影响。此外,本文还解决了 TCI 面临的挑战,包括及时和有针对性地将抗原和佐剂递送至皮肤内的 APC,以及更深入地了解导致有效记忆反应的不明确机制。
* 通讯作者:firsel1012@gmail.com 摘要 注射器接种疫苗的使用提高了儿童的免疫覆盖率。尽管如此,肺炎仍然是五岁以下儿童死亡的主要原因,占该年龄段死亡人数的 70% 以上。为了应对针头恐惧症等挑战,透皮给药系统为局部和全身给药提供了一种有前途的微创替代方案。本研究重点开发和评估一种用于儿童肺炎疫苗透皮给药的椰果-透明质酸纤维素微针制剂。研究包括制备椰果、纤维素悬浮液、微针制造以及随后的特性描述和有效性测试。结果表明,微针达到溶胀平衡,溶胀度为 1。扩散测试表明,90 分钟内药物释放率为 1.173%,穿透角质层。扫描电子显微镜 (SEM) 分析证实,Pin 12 的平均微针长度为 763.6 μm,宽度为 191.7 μm,表明其适合透皮应用。这些发现凸显了椰果透明质酸微针是设计精良且有效的肺炎球菌疫苗输送平台,为改善儿科免疫接种和应对儿童医疗保健中的关键挑战提供了一种新颖的解决方案。关键词:药物输送系统、微针、椰果、PCV-13(肺炎球菌结合疫苗-13)
RNA 干扰 (RNAi) 仍然是一种强大的技术,可通过 mRNA 降解来有针对性地减少基因表达。该技术适用于多种生物,在物种丰富的鞘翅目 (甲虫) 中非常有效。在这里,我们总结了在新生物中开发该技术的必要步骤,并说明了它在水生潜水甲虫 Thermonectus marmoratus 的不同发育阶段中的应用。可以通过针对已知基因组的近亲或从头组装转录组来经济高效地获得目标基因序列。候选基因克隆利用特定的克隆载体 (pCR4-TOPO 质粒),该载体允许使用单个通用引物为任何基因合成双链 RNA (dsRNA)。合成的 dsRNA 可以注射到胚胎中用于早期发育过程,也可以注射到幼虫中用于后期发育过程。然后,我们说明如何使用琼脂糖固定将 RNAi 注射到水生幼虫中。为了演示该技术,我们提供了几个 RNAi 实验示例,生成具有预测表型的特定敲低。具体来说,晒黑基因 laccase2 的 RNAi 会导致幼虫和成虫的角质层变浅,而眼色素沉着基因 white 的 RNAi 会导致眼管变浅/缺乏色素沉着。此外,关键晶状体蛋白的敲低会导致幼虫出现视力缺陷和捕猎能力下降。综合起来,这些结果体现了 RNAi 作为一种工具的强大功能,可用于研究仅具有转录组数据库的生物体的形态模式和行为特征。
番茄 ( Solanum lycopersicum ) 是一种全球性种植的作物,具有巨大的经济价值。外果皮决定了番茄果实的外观,并在收获前和收获后保护其免受各种生物和非生物挑战。然而,目前还没有番茄外果皮特异性启动子,这阻碍了基于外果皮的基因工程。在这里,我们通过 RNA 测序和逆转录-定量 PCR 分析发现番茄基因 SlPR10 ( PATHOGENESIS RELATED 10 ) 在外果皮中大量表达。由 2087-bp SlPR10 启动子 ( pSlPR10 ) 表达的荧光报告基因主要在 Ailsa Craig 和 Micro-Tom 品种的转基因番茄植株的外果皮中检测到。该启动子进一步用于番茄中 SlANT1 和 SlMYB31 的转基因表达,它们分别是花青素和角质层蜡质生物合成的主要调节因子。pSlPR10 驱动的 SlANT1 表达导致花青素在外果皮中积累,赋予果实抗灰霉病和延长保质期,而 SlMYB31 表达导致果皮蜡质增厚,延缓水分流失并延长果实保质期。有趣的是,pSlPR10 和另外两个较弱的番茄外果皮优先启动子在转基因拟南芥 (Arabidopsis thaliana) 植物的子房中表现出一致的表达特异性,这不仅为番茄外果皮和拟南芥子房之间的进化同源性提供了线索,而且为研究拟南芥子房生物学提供了有用的启动子。总的来说,这项研究报告了一种理想的启动子,能够在番茄外果皮和拟南芥雌蕊中实现靶基因表达,并证明了其在番茄果实品质遗传改良中的实用性。
摘要:紫外线(UV)辐射会导致90%的光损伤对皮肤,长期暴露于紫外线辐射是对皮肤健康的最大威胁。研究了紫外线引起的光损伤的机制和晒伤皮肤的修复,要解决的关键问题是如何非破坏性和连续评估对皮肤的UV诱导的光损伤。在这项研究中,提出了一种使用光学相干断层扫描(OCT)定量分析人工皮肤(AS)的结构和组织光学参数的方法,作为一种非损害和连续评估光损伤效果的一种方式。是根据OCT图像的强度信号的特征峰来实现表面粗糙度的,这是使用Dijkstra算法量化为角质层厚度的基础。通过灰级共发生矩阵法获得的本质本地纹理特征。一种经过修改的深度分辨算法用于量化基于单个散射模型的3D散射系数分布。对AS进行了光损伤的多参数评估,并将结果与MTT实验结果和H&E染色进行了比较。紫外线发生损伤实验的结果表明,与正常培养的AS相比,光损伤模型的角质层较厚(56.5%),表面粗糙度(14.4%)。角第二矩更大,相关性较小,这与H&E染色显微镜的结果一致。AS的组织散射系数与MTT结果良好相关,可用于量化生物活性的损害。角度时刻和相关性与紫外线辐射剂量有良好的线性关系,这说明了OCT在测量内部结构损伤中的潜力。实验结果还证明了维生素C因子的抗疫苗效率。对AS的结构和组织光学参数的定量分析可实现多个维度中AS的非破坏性和连续检测。
摘要:脱落酸(ABA)参与调控抗旱性,而吡巴克汀抗性样(PYL)蛋白被称为脱落酸受体。为了阐明水稻中脱落酸受体之一的作用,通过 CRISPR / Cas9 在水稻中诱变 OsPYL9。基于位点特异性测序筛选出缺乏任何脱落酸靶标和 T-DNA 的纯合和杂合突变体植物,并用于形态生理学、分子和蛋白质组学分析。在胁迫条件下,突变株似乎积累了更高的脱落酸、抗氧化活性、叶绿素含量、叶片角质层蜡质和存活率,而丙二醛水平、气孔导度、蒸腾速率和维管束则较低。蛋白质组学分析发现总共有 324 种差异表达蛋白 (DEP),其中 184 种和 140 种分别上调和下调。OsPYL9 突变体在干旱和水分充足的田间条件下均表现出谷物产量增加。大多数与昼夜节律、干旱反应和活性氧有关的 DEP 在突变体植物中上调。京都基因和基因组百科全书 (KEGG) 分析显示 DEP 仅参与昼夜节律,基因本体论 (GO) 分析表明大多数 DEP 参与对非生物刺激的反应以及脱落酸激活的信号通路。蛋白质 GIGANTEA、Adagio 样和伪反应调节蛋白在蛋白质-蛋白质相互作用 (PPI) 网络中表现出更高的相互作用。因此,总体结果表明CRISPR / Cas9产生的OsPYL9突变体具有提高水稻抗旱性和产量的潜力。此外,全局蛋白质组分析为水稻抗旱的分子机制提供了新的潜在生物标记和理解。
几种昆虫与真菌具有亲生性关系。昆虫吃了真菌,但是在大多数真菌昆虫中,这种关联与昆虫不同,因为昆虫会操纵真菌,因此间接地衍生了营养与原本难以或无法利用的底物。Ambrosia甲虫(一些Scolytinae和几乎所有铂科)与真菌有关,使它们能够使用木质植物的木质部。真菌是幼虫和成人的主要食物,其关键作用可能在浓缩氮中,木材中的浓度很低。他们还提供固醇,例如麦角固醇,这对于甲虫的发育至关重要。树皮甲虫(大多数scolytinae)主要以木质组织的韧皮部为食,木质组织的营养素高于木质部。他们也有真菌关联,但它们的依赖性不太极端。甲虫 - fungus关联不是物种特异性的。几个真菌属与Ambrosia甲虫有关。最著名的两个是镰刀菌和Ambrosiella。大多数与树皮甲虫相关的人都在ceratocystis属中。切叶蚂蚁(Attini)取决于特定的幼虫食品真菌。工人蚂蚁从活植物中切下叶子和其他部位,并将其带到巢穴。在这里,蚂蚁咀嚼植物碎片,去除蜡质角质层,并可能清除植物表面上现有的微生物。使用粪便,他们将咀嚼的碎片建立到一个花园中,并从现有花园接种菌丝。真菌是仅发生在这些蚂蚁巢中的基本菌。宏观甲虫还在花园中种植真菌,称为真菌梳,由含有木材碎片的新鲜粪便材料制成。真菌在白蚁属中仅与白蚁有关。它会分解纤维素和木质素,并且在白蚁摄入时,它将其纤维素分解酶贡献给昆虫的酶。氮也被浓缩。在真菌的生殖结构中,白蚁食用,达到8%的干重;最初摄入的木材可能只有约0.3%的干重。termitidae,包括大近三甲虫,没有内共生原生动物。
人类皮肤充当身体与外部环境之间的保护障碍。角质层(SC)中的皮肤微生物组和细胞间脂质对于维持皮肤屏障功能至关重要。但是,尚不完全了解皮肤细菌与脂质之间的相互作用。在这项研究中,我们表征了57名健康参与者队列中前臂和面部的皮肤微生物组和SC脂质谱。16S rRNA基因测序表明,身体位置和性别之间的皮肤微生物组成显着不同。雌性前臂样品具有最高的微生物多样性。hominis葡萄球菌,微球菌,结核菌菌群,细菌,麦格纳(Finegoldia Magna)和moraxellaceae sp。的相对丰度。明显高于脸部。通过重建未观察到的状态(PICRUST2)和ANCOM-BC对群落进行系统发育研究对16S rRNA基因测序的预测功能分析显示,身体位置或性别之间的细菌代谢途径不同雌性前臂和硫氧化途径,雄性脸更丰富。SC脂质轮廓在身体位置之间也有所不同。总游离脂肪酸(FFA),硫酸胆固醇和鞘氨酸的面部更丰富。二氢 - /6-羟基/植物 - 陶瓷的前臂中更丰富。16S rRNA基因测序和脂质的相关分析揭示了细菌与皮肤脂质之间的新型相互作用。香农熵和hominis与FFA,硫酸胆固醇和鞘氨酸负相关;虽然与二氢/6-羟基/植物神经酰胺正相关。预测途径谱和脂质的相关性鉴定出与氨基酸代谢相关,碳水化合物降解,芳香族化合物代谢和脂肪酸降解代谢与Dihydro-/6-Hydroxy/phyto-ChoreTer collatise collatise collatise collatise collatise collatise conteration s呈阳性相关。鞘氨醇。这项研究提供了有关皮肤微生物组和脂质之间潜在相关性的见解。