透皮胰岛素递送提供了传统皮下注射的有希望的替代方法,为糖尿病管理提供了一种无痛且可自给自足的治疗选择。微针技术已成为一种可行的方法,利用细小的针状投影绕过角质层并系统地输送胰岛素。正在探索各种材料,包括金属,硅,陶瓷,聚合物和二氧化硅玻璃,以用于微针制造。本综述讨论了皮肤的解剖结构,药物吸收途径以及透皮药物输送系统的优势,包括微针阵列,斑块和泵。突出显示了微针取代皮下胰岛素注射的潜力,以及确保精确药物释放并应对与皮肤刺激,药物稳定性和可伸缩性有关的挑战的重要性。
最受过临床试验的细胞,间充质基质细胞(MSC)现在已知主要通过包括外泌体的旁分泌分泌发挥其治疗活性。为了减轻对MSC外泌体制备的可伸缩性和可重复性的潜在调节问题,使用高度表征的MYC降低的单克隆细胞系产生MSC外泌体。这些细胞不会在无胸腺裸鼠或表现出与锚固无关的生长中形成肿瘤,并且它们的外泌体不携带MYC蛋白或促进肿瘤生长。与腹膜内注射不同,MSC在IMQ诱导的牛皮癣的小鼠模型中的局部应用减轻了白介素(IL)-17,IL-23和末端组合复合物,C5B9在牛皮乳肌皮中。应用于人类皮肤外植体时,从共价标记的荧光MSC外泌体的荧光渗透并持续在角质层中,大约24小时,而从角质层中忽略不计,将其从角膜层中忽略不计。作为牛皮癣的角膜层的特征在于活化的补充和Munro微鳞片,我们假设局部施用的外泌体渗透到牛皮癣的角膜层以抑制C5B9补体通过CD59抑制CD59,并且这种抑制作用抑制了中性粒细胞粒细胞的IL IL-17。与此相一致,我们证明了C5B9在纯化的人类嗜中性粒细胞诱导的IL-17分泌上的组装,MSC外泌体使这种诱导构成了这种诱导,这又被中和中和的抗CD 59抗体所消除。因此,我们确定了通过局部应用外泌体缓解银屑病IL-17的作用机理。由Elsevier Inc.出版©2023国际细胞和基因治疗学会。这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
使用模型生物线虫C.秀丽隐杆线虫的研究极大地说明了我们对感觉生物学的理解,包括触摸,嗅觉,味觉,味觉,视觉和前置感。长期以来一直认为听力仅限于脊椎动物和某些节肢动物,但我们最近发现秀丽隐杆线虫能够以频率和声音源尺寸的方式感测和对机载声音。C.秀丽隐杆线虫的听觉感觉是当机载声音在物理上振动其外部角质层(皮肤)以通过烟碱乙酰胆碱受体(NACHR)激活声音敏感的机械感应FLP/PVD神经元时,就会发生听觉感觉。在这里,作者报告了逐步的方法来表征秀丽隐杆线虫听觉感觉的这三个特征,包括声音引起的皮肤振动,神经元激活和行为。这种方法提供了一个可访问的平台,以研究秀丽隐杆线虫中听觉感觉和机械传输机制的细胞和分子机制。
和库克索尼亚,这也反映了功能和形态上的真正差异。Salopella 有相当类似苔类植物的叶状体——接缝、下摆、两个配子体瓣;类似芽杯和裂片的结构——似乎仍然适合整体潮湿和群居的苔类植物摇篮栖息地。4)库克索尼亚的苔类植物要少得多(我们在它们身上也没有发现芽杯),似乎已经准备好单独旅行,至少可以去更远的地方,有水平的主根,在地面以上,利用沿途小沟和凹槽的营养水分;厚厚的角质层可以抵御干燥和通常炎热的气候,当然还有与真菌的巧妙共生(它们都有),为它们的后代在仍然贫瘠的腹地提供水分和营养必不可少的背包。这完全取决于它们的培育。这些最伟大的英雄没有后盾。世界应该每年设立一个世界植物日,以纪念这些植物的无价贡献。
Dermtech色素性病变测定(PLA)测试测量六个基因的表达(Prame,Linc00518,CMIP,B2M,ACTB,PPIA)。对通过直径至少5 mm的皮肤样品进行了测试,这些病变是通过角质层标本的非侵入性,专有的粘合剂斑块活检获得的。该测试在手掌,脚底,指甲或粘膜的手掌上不起作用,不应用于出血或溃疡病变。PLA测试报告包括两个结果。第一个是PLA MAGE(黑色素瘤相关的基因表达),它表明风险较低(未检测到Prame和Linc00518表达),中等风险(检测到Prame或Linc00518的表达)或高风险(同时检测到Prame和Linc00518的表达)。第二个结果是算法PLA评分,范围为0至100,得分较高,表明对恶性疾病的怀疑更高。尚不清楚PLA测试是否应用作皮肤镜检查的替代,分类或附加测试。PLAPLUS™测试还包括对TERT变体的测试。
摘要:近年来,透皮给药途径已成为最有利的给药方式。它克服了口服给药方式的几个问题,包括与先前代谢相关的重大问题。为了绕过这一限制,人们创建了透皮给药系统;然而,通过这种方式给药的药物仍然面临挑战,因为一些药物的颗粒无法有效穿透角质层。我们的科学家和研究人员创造了一种称为极易变形囊泡系统的新技术来解决这一难题。在这种方法中,药物分子(无论是合成的还是天然的)与囊泡结合,以便将其输送到皮肤的特定区域。在传递体和醇质体中,传递醇质体是改善经皮肤透皮给药的独特希望。纳米传递醇质体的有效渗透是由乙醇、边缘活化剂和磷脂促进的。 UDV 可用于通过透皮途径给药多种药物,包括抗关节炎药物、抗菌药物、抗癌药物、抗病毒药物和镇痛药物。
竹节虫 Medauroidea extradentata 的孤雌生殖生命周期为转基因品系的产生提供了独特的优势,因为原则上在第一代就可以实现同源且稳定的转基因品系。然而,到目前为止,用于操纵其基因的遗传工具尚未开发出来。在这里,我们成功地实施了 CRISPR/Cas9 技术来修改竹节虫 Medauroidea extradentata 的基因组。作为概念验证,我们针对参与眼色素沉着的 ommochrome 途径的两个基因(朱砂和白色,分别为第二和第一外显子)以产生敲除 (KO) 突变体。产卵后 24 小时内进行微注射,重点关注单细胞(和单倍体)发育阶段。产生的 KO 导致朱砂和白色的眼睛和角质层颜色表型不同。纯合朱砂突变体的眼睛和表皮呈现淡色色素沉着,而纯合白色 KO 导致发育中的胚胎完全无色素表型。总之,我们表明 CRISPR/Cas9 可以成功应用于 M. extradentata 的基因组,从而产生表型不同且可存活的动物。现在可以使用这种遗传工具箱,利用孤雌生殖非模式生物创建稳定的转基因品系。
特应性皮炎 (AD) 是一种常见的慢性炎症性皮肤病 [1]。在许多国家,AD 的终生患病率估计为 15% 以上 [2]。持续剧烈瘙痒导致的明显皮肤病变和睡眠障碍显著影响 AD 患者的生活质量 [3,4]。AD 的发病机制是多因素的,涉及异常的免疫反应、遗传和环境因素以及皮肤屏障功能障碍 [5-7]。2 型辅助 T (Th2) 细胞因子,如白细胞介素 (IL)-4 和 IL-13,在 AD 的发展中起着重要作用 [2]。AD 的皮肤屏障功能障碍与角质层中一种关键的皮肤屏障相关蛋白 fi laggrin 基因的功能丧失突变有关 [8,9]。 Th2 细胞因子可下调皮肤屏障相关蛋白的表达,而 Th2 细胞因子在 AD 皮肤病变中过度表达,导致进一步的皮肤屏障功能障碍 [8,9]。与健康皮肤相比,AD 皮肤病变处的角质层水合 (SCH) 减少,经表皮失水 (TEWL) 增加 [10],这反映了 AD 患者皮肤水分含量较低是由屏障功能障碍导致的。AD 治疗的主要目标是维持长期缓解,即 AD 的症状和体征消失或极少,且不影响日常活动 [1]。外用皮质类固醇是目前治疗 AD 的主要手段;然而,长期使用外用皮质类固醇会导致特定的不良反应,如皮肤萎缩,并可能导致皮肤屏障功能障碍 [11]。尽管非甾体外用药物已经面世,但仍然需要能够长期使用并改善皮肤屏障功能的有效外用药物。他匹那洛夫是一种非甾体外用芳烃受体 (AhR) 激动剂 [12]。AhR 是一种胞浆配体依赖性转录因子。通过激活 AhR,他匹那洛夫上调皮肤屏障相关蛋白的表达,如 filagrin、hornerin 和 involucrin [12]。他匹那洛夫的药理作用还包括下调促炎性细胞因子表达和通过激活核因子红细胞 2 相关因子 2 通路上调抗氧化酶表达 [12,13]。因此,他匹那洛夫可以成为一种治疗 AD 的新型外用药物,其特征性药理作用包括改善皮肤屏障功能的潜力。迄今为止,已开展了多项临床研究,以评估他匹那洛夫在 AD 患者中的疗效和安全性 [ 14 – 17 ]。这些研究结果表明他匹那洛夫是有效的,并且具有可接受的安全性。在本研究中,我们试图评估他匹那洛夫对 AD 患者皮肤屏障功能的改善作用。
2020-2023。 作为研究人员,参与米兰大学农业与环境科学系的玉米遗传学实验室的研究活动。 相关的活动:i)与玉米和其他农业利益物种中表皮沉积有关的基因的分子遗传表征; ii)分析角质层保护侵害生物非生物胁迫的作用; iii)对叶片蒸腾作用的基因的功能分析; iv)参与植物开发的玉米的矮人基因的映射; v)研究涉及玉米玉米甲壳的形成和表型变异性的基因研究。 我致力于巩固我的科学独立性。 我通过访问,参与会议和撰写项目建议来加强我的国际和国家合作。 近年来,我积极参与了国家和国际呼吁的竞争项目的概念和起草。 看不见的资助项目同样获得了良好或出色的评估。 我在国际上与波尔多大学的弗雷德里克·多姆格(Frederic Domergue)合作 - 法国维伦纳夫·奥农(Villenave d'Ornon)Inra Bordeaux Aquitaine(Castorina等人) 2020,植物生理学;摘要:Castorina等,2023; Castorina等。 手稿准备);美国爱荷华州立大学的Marna D. Yandeau-Nelson(Castorina等人 2023,前。 植物滑雪。 手稿准备)。作为研究人员,参与米兰大学农业与环境科学系的玉米遗传学实验室的研究活动。相关的活动:i)与玉米和其他农业利益物种中表皮沉积有关的基因的分子遗传表征; ii)分析角质层保护侵害生物非生物胁迫的作用; iii)对叶片蒸腾作用的基因的功能分析; iv)参与植物开发的玉米的矮人基因的映射; v)研究涉及玉米玉米甲壳的形成和表型变异性的基因研究。我致力于巩固我的科学独立性。我通过访问,参与会议和撰写项目建议来加强我的国际和国家合作。近年来,我积极参与了国家和国际呼吁的竞争项目的概念和起草。看不见的资助项目同样获得了良好或出色的评估。我在国际上与波尔多大学的弗雷德里克·多姆格(Frederic Domergue)合作 - 法国维伦纳夫·奥农(Villenave d'Ornon)Inra Bordeaux Aquitaine(Castorina等人)2020,植物生理学;摘要:Castorina等,2023; Castorina等。手稿准备);美国爱荷华州立大学的Marna D. Yandeau-Nelson(Castorina等人2023,前。植物滑雪。手稿准备)。); Echenique Vivian及其团队,Cerzos - Cerzle,Agronomía系,大学大学,巴伊亚·巴希亚(BahíaBahía),阿根廷(Castorine等。在国家一级,我有不同的合作,在不同的科学出版物中见证(Lanzous等人2021,JPDP; Casorina等。2020,IJM; Sime等。2022,农学)和数字为方便起作用。
在几种物种中,抗性和易感个体之间的表型差异与基因表达的组成型变化有关。例如,在对神经毒性杀虫剂有抵抗力的个体中观察到了排毒基因家族的构型过表达。这表明了代谢解毒在抗性中的作用,在某些情况下,允许允许使用哪些基因参与耐药的遗传方法。细胞色素P450单糖酶和三磷酸腺苷(ATP)结合盒(ABC)转运蛋白的情况就是这种情况。5,24 - 29除解毒基因之外,已经记录了编码角质层合成基因的过表达,并导致耐药性和易感性的独立物(即穿透性抗性)之间的表皮变化。30该证据突出了通常基于抗性表型的复杂性,并表明需要研究基因表达以充分理解昆虫抗性。与其他杀虫剂相反,抗药性个体中的表达情况已被广泛阐明,蚊子对CSIS的抗性表型的整个基因表达模式仍然被忽略了。在这里,我们的目标是通过分析蚊子CX的易感和耐DFB个体的构成基因表达来弥补这一差距。pipiens。