人类基因组学面临的一个主要挑战是破译序列与功能之间的特定关系。然而,现有的用于在原生基因组背景下进行位点特异性超突变和进化的工具有限。在这里,我们提出了一种用于长距离、位点特异性超突变的新型可编程平台,称为解旋酶辅助连续编辑 (HACE)。HACE 利用 CRISPR-Cas9 来靶向进行性解旋酶-脱氨酶融合,该融合会在较大的 (>1000 bp) 基因组间隔内引起突变。我们应用 HACE 来识别 MEK1 中导致激酶抑制剂抗性的突变,剖析 SF3B1 依赖性错误剪接中各个变体的影响,并评估 CD69 刺激依赖性免疫增强剂中的非编码变体。HACE 提供了一种强大的工具,可用于研究编码和非编码变体、揭示组合序列与功能的关系以及发展新的生物功能。
DEAD/H-box 解旋酶几乎参与了 RNA 代谢的各个方面,包括转录、前 mRNA 剪接、核糖体生物合成、核输出、翻译起始、RNA 降解和 mRNA 编辑。大多数解旋酶在各种癌症中上调,其中一些突变与多种恶性肿瘤有关。最近,合成致死 (SL) 和合成剂量致死 (SDL) 方法正在成为癌症研究的主要领域,其中利用癌症相关基因的遗传相互作用作为治疗靶点。几种 DEAD/H-box 解旋酶,包括 DDX3、DDX9 (Dbp9)、DDX10 (Dbp4)、DDX11 (ChlR1) 和 DDX41 (Sacy-1),已在人类和不同模型生物中进行了 SL 分析。是否可以利用 SDL 来识别 DEAD/H-box 解旋酶过表达癌症中的可用药物靶点仍有待探索。在本综述中,我们分析了多种癌症类型中 DEAD/H-box 解旋酶子集的基因表达数据,并讨论了如何利用它们的 SL/SDL 相互作用进行治疗。除了讨论针对 DEAD/H-box 解旋酶的药物发现中的一些挑战外,我们还总结了临床应用的最新进展。
hatzimanolis,精神分裂症患者衍生的嗅觉神经元干细胞中的橡木失调的循环RNA是与细胞迁移和亚细胞组织相关的疾病相关性状的基础
抽象的解旋酶利用三磷酸核苷酸(NTP)水解沿单链核酸(NA)易位并放开双链体。在细胞中,解旋酶在其他NA相关蛋白(如单链DNA结合蛋白)的背景下起作用。这种遭遇调节了解旋酶功能,尽管潜在的机制在很大程度上未知。甲状腺酸虫甲状腺酸性色素D组D(XPD)解旋酶是理解超家族2B解旋酶的分子机制的模型,并且其活性通过认知单链单链DNA DNA的DNA结合蛋白重复蛋白A 2(RPA2)增强。在这里,在RPA2存在下,单个XPD解旋酶的放松活性的光学陷阱测量揭示了一种机制,在该机制中,XPD在两个具有不同过程的状态之间互动,并且瞬态RPA2相互作用稳定了更为方便的状态,从而激活了XPD中的潜在“过程开关”。XPD上调节DNA结合位点的点突变类似地激活了此开关。这些发现提供了对辅助蛋白调节解旋酶调节机制的新见解。
摘要:分类为六个超家族的解旋酶是利用从ATP水解到重塑DNA和RNA底物的能量的机械酶。这些酶在各种细胞过程中具有关键作用,例如翻译,核糖体组装和基因组维持。解旋酶,并且许多病毒表达的旋转酶是其致病性所必需的。因此,解旋酶是化学探针和治疗剂的重要靶标。但是,开发针对构象动力学高构酶的化学抑制剂的化学抑制剂非常具有挑战性。我们认为,在化学蛋白质组学研究中使用的电力“侦察片段”可以利用用于开发共价抑制剂的解旋酶的抑制剂。我们采用了一种功能优先的方法,将酶试验与对映体探针对和质谱分析相结合,以开发一种共价抑制剂,该抑制剂有选择地靶向SARS-COV-2 NSP13中的变构位点,一种超级家庭-1解旋酶。此外,我们证明了侦察片片段抑制了与基因组维持有关的两个人类超家族酶BLM和WRN的活性。一起,我们的发现提出了一种发现在构象动态机械酶中发现共价抑制剂起点和可药物变构位点的方法。
激活信号协整1络合物(ASCC)亚基3(ASCC3)支持各种基因组维持和基因表达过程,并包含对这些功能至关重要的串联SKI2样NTPase/Helicase Cassettes。先前,ASCC3解旋酶活性和调节的分子机制尚未解决。我们提出了低温电子显微镜,DNA-蛋白交联/质谱法以及ASCC ASCC3-TRIP4亚模块的体外和细胞功能分析。与相关的剪接SNRNP200 RNA解旋酶不同,ASCC3可以通过两个解旋酶盒子螺纹底物。Trip4通过锌纤维结构域停靠在ASCC3上,并通过将ASC-1同源性域定位在ASCC3的C末端解旋酶旁边,从而刺激解旋酶,这可能支持底物参与并协助DNA退出。trip4与DNA/RNA Dealkylase,AlkBH3相互互动ASCC3,指导ASCC3用于特定过程。我们的发现定义ASCC3-TRIP4作为ASCC的可调电动机模块,该模块包含两个合作的NTPase/Helicase单位,该单位功能扩展了Trip4。
区域具有形成次级DNA结构的潜力,对DNA复制产生了频繁且显着的障碍,并且必须积极管理以保持遗传和表观遗传完整性。回复体如何检测和响应二级结构的理解很少。在这里,我们表明,在其C末端区域的真核重置,永恒的港口中叉式保护复合物的核心成分是先前未批准的DNA结合结构域,该结构域表现出与G- Qu-Qudruplex(G 4)DNA结构的结合。我们表明,该域有助于通过G 4形成序列维持过程复制,并具有相邻的PARP结合域的部分冗余。此外,这种永恒的功能需要与解旋酶DDX 11的相互作用和活性。永恒和DDX 11的丧失会导致G 4形成序列和DNA损伤的表观遗传不稳定性。我们的发现表明,永恒有助于重新分散体感知复制障碍G 4的形成的能力,并确保DDX 11通过DDX 11对这些结构的迅速解决,以维持过程中的DNA合成。